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• Introduce basic turbulence concepts and solar wind observations

• Motivate and introduce gyrokinetics

• Discuss results pointing toward Landau damping and entropy cascade

• Intermittency in KAW turbulence using the GENE code

• Field-particle correlations to diagnose dissipation

• Eulerian Vlasov-Maxwell code, Gkeyll



Solar Wind Turbulence



What is turbulence?
“The most important unsolved problem of classical physics.” - Feynman



Why is turbulence important?
Turbulence in important because it governs the transport of

• Energy (energy flow, heating)

• Mass (mixing, accretion)

• Momentum (jet interactions, shocks)

Turbulence plays an important role in a large variety of space and astrophysical 
phenomena, e.g.,

• Accretion discs

• Interstellar medium

• Star-forming nebulae

• Solar corona and solar wind



Energy spectrum

E(k) ⇠ v2/k / k�5/3



MHD turbulence

• Turbulence is no longer mediated by vortices but 
interacting Alfvén waves

• In a magnetized plasma, the large-scale 
magnetic field adds a preferential direction to the 
system

• Turbulence becomes anisotropic



Solar wind energy spectrum
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tion (MFI)instrument [œeppi•g et at., 1995] and ther- 
mal particle measurements from the SWE instrument 
[Ogit•ie et at., 1995] recorded in the solar wind when 
in near-Earth orbit between January 1995 and Febru- 
ary 1997. Wind was typically between 100 RE and 
200 RE upstream during the intervals in question. For 
all intervals in this study we use the highest available 
resolution magnetic field data; depending on the dis- 
tance from Wind to Earth, the sampling rate was either 
46, 92, or 184 ms. The resolution of the plasma data 
was 92 s. 

No attempt was made to limit this study to "... the 
purest examples of... outwardly propagating Alfv•n 
waves occur[ring] in high-velocity solar wind streams 
and on their trailing edges..." as did Betchef a•d Davis 
[1971, p. 3534] or to exclude disturbance regions such 
as coronal mass ejections or shocked plasma. We do 
attempt to eliminate periods of non-stationary behav- 
ior that might lead to improperly computed spectra, 
and intervals with power spectra that demonstrate sig- 
nificant upstream wave activity (due to apparent mag- 
netic connection to the Earth's bow shock) are also re- 
jected. Some spectra computed were rejected because 
no break in the spectrum was visible below the Nyquist 
frequency. Only periods that result in power law iner- 
tial range spectra are kept; power law dissipation range 
spectra were virtually always seen when a distinct spec- 
tral break was observed, and it was generally a poorly 
determined inertial range spectrum that led to the re- 
jection of some candidate intervals in this study. This 
study makes no claim of applicability outside this limi- 
tation. 

The 33 intervals used here span a wide range of basic 
plasma parameters: 

333 < Vsw < 692 km s -• 
3.1 <_ <B) _< 28.5 nT 

9-10 •_ OBvsw _• 87.10 
0.034 _•/Sp _• 2.75 

18.5 •_ v•t •_ 110.2 km s -x 
2.3 _• r¾ _• 49.5 cm -a 

2.24 x 104 _• T• _• 4.09 x 105 K, 
which are solar wind speed, magnetic field strength, 
field-to-flow angle, proton plasma/5, Alfv•n speed, pro- 
ton density, and proton temperature, respectively. 

The cross correlation between magnetic field and so- 
lar wind velocity fluctuations, 

where 5v A - 5B/x/pon•rn•, was computed using 92 s 
data. The cross correlation crz•v differs from the cross 
helicity but is similarly constrained to be -1 •_ •rz•v •_ 
+ 1. It provides an indication of the relative percentage 
of sunward and antisunward propagating Alfv•n waves 
in the inertial range. Seven of the 33 periods studied 
showed a dominance of sunward propagating waves with 
three of these seven having [•rBv[ •_ 0.25. 

Figure 1 shows the trace of the power spectral density 
matrix for hour 1300 on day 30 of 1995, which is typi- 

cal in most regards of the events used here. The high- 
frequency end of the inertial range spectrum is shown 
at spacecraft frame frequencies v,c < 0.44 H•.. The in- 
ertial range terminates in a spectral break to a steeper 
spectral index. This spectral break marks the onset of 
the dissipation range at v,c > 0.44 Hz. We return to 
Figure 1 below in sections 2.1 and 2.2. 
2.1. Method 

We used the following algorithm to analyze each data 
interval: 

1. Eliminate "flyers" and bad points. Any measure- 
ment that is more than 3.5cr from the mean in any com- 
ponent is removed. Typically, 1% of the data set (,-,400 
points out of 40,000) are removed in this way. The gaps 
so created are linearly interpolated. 

2. Prewhiten the data with a first-order difference 
filter to reduce the influence of leakage when computing 
the spectra. 

3. Compute the power spectra using the correlation 
matrix method of Btackrna• a•d Tuke•l [1958]. A max- 
imum lag of 10% of the length of the data set results in 
20 degrees of freedom for the spectral estimates. The re- 
suiting spectra are then postdarkened to correct for the 
earlier prewhitening [Che•, 1989; Bieber et at., 1993]. 

4. Fit power laws to inertial and dissipation range 
spectra using a least squares fit. We omit frequencies 
close to the apparent spectral breakpoint when fitting 
the two spectral ranges. Figure 1 is typical in most re- 
spects of the spectra considered here, except in that it 
does not show sharp peaks at harmonics of the space- 
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Figure 1. Typical interplanetary power spectrum 
showing the inertial and dissipation ranges. (a) Trace 
of the spectral matrix with a break at .-.0.4 Hz where 
the dissipation range sets in. (b) The corresponding 
magnetic hellcity spectrum. The date and time of the 
data used are given. 

Magnetic energy (a) and helicity (b) 
from Leamon et al (1998).

• Alfvénic inertial range transitions into 
something else at the spectral break

• Proposed to be kinetic Alfvén waves, 
magnetosonic whistler waves, ion cyclotron 
waves, or current sheets



Wave modes

From TenBarge et al (2012)



Contemporary solar wind energy spectra

The Astrophysical Journal, 760:121 (6pp), 2012 December 1 Alexandrova et al.

Figure 1. Frequency spectra with a signal-to-noise ratio greater than 3 measured
by Cluster-1/STAFF in the free solar wind (for 27 intervals randomly chosen
among 100). The dashed line shows the instrument noise level. The vertical
dotted line corresponds to f = 3 Hz. The legend indicates the variations of
some solar wind parameters for the studied data set of 100 spectra: speed V,
magnetic field B, temperature ratio, and the ion and electron plasma β.

Previous authors (Sahraoui et al. 2010) have used a double
power-law model with a break to fit the observations in the
electron inertial and dissipation ranges. We have applied this
model as well to our data, and we find that the first power-law
exponent is consistent with the previous studies (Alexandrova
et al. 2009; Chen et al. 2010) while the second exponent varies a
lot. Despite the fact that the double power-law model has more
free parameters than the exponential model used here, we find
that it describes only 30% of the observed spectra and that the
associated break scale does not present any clear correlation
with an electron characteristic scale.

2. OBSERVATIONS

For our statistical study, we select homogeneous intervals
of 10 minutes (long enough to study kinetic scales) within the
five years interval (2001–2005) of Cluster. We eliminate time
intervals during which Cluster is magnetically connected to the
bow shock by using electrostatic wave spectrograms, which
show clearly waves typical of the electron foreshock (Etcheto &
Faucheux 1984; Lacombe et al. 1985), and by using the shock
model described by Filbert & Kellogg (1979). For small angles
ΘBV between the interplanetary magnetic field B and the solar
wind velocity V, Cluster is connected to the shock. Thus, our
data set only contains intervals for which the angle ΘBV > 60◦.
If the turbulent fluctuations have a phase speed Vφ ≪ V , Cluster
detects by Doppler shift the fluctuations with k∥V. As B and
V are quasi-perpendicular, Cluster measures fluctuations with
k ⊥ B. We apply the Taylor hypothesis to get the wavenumber
from the frequency, k⊥ = 2πf/V . However, about ∼ 10% of the
pre-selected intervals show the presence of right-hand polarized
whistlers in quasi-parallel propagation. For these waves the
Taylor hypothesis is not applicable because Vφ > V . We discard
these intervals in the present study. This data selection process
gives us 100 intervals. Within this statistical sample, the plasma
conditions vary as usually in the solar wind in fast and slow
streams at 1 AU (see the legend of Figure 1).

Figure 1 shows the total power spectral density (PSD) of
magnetic fluctuations, for 27 intervals randomly chosen among
100, as a function of frequency in the spacecraft frame P (f ),
as measured by STAFF with the Search Coil sensors (SC)
at f ∈ [0.5, 9] Hz and with the Spectrum Analyser (SA) at
f ! 8 Hz. The spectra are analyzed only for the frequencies

Figure 2. Fit of the most intense spectrum of Figure 1 with the exp model. The
spectrum was measured by Cluster-1/STAFF on 2004 January 22. Green crosses
represent the SC measurements, red stars show the raw SA measurements
without correction of the first three underestimated points, visible here around
0.1 km− 1. Diamonds indicate the STAFF-SA noise level. The blue arrows
indicate inverse ion and electron Larmor radii, and the black ones correspond
to the inertial lengths. The solid line gives the exp model Ak− 8/3 exp(− kρe).
(A color version of this figure is available in the online journal.)

where the signal-to-noise ratio (S/N) is larger than 3. The
spectral parts below this threshold are not shown to avoid any
erroneous interpretation. As one can see from Figure 1, this
instrumental noise limit allows us to use data up to 30–400 Hz,
depending on the turbulence intensity (i.e., for the most intense
spectrum, we have valid observations up to 400 Hz). The
analyzed range of frequencies corresponds to f ∈]fci, fce].

A poor calibration of the first three frequencies of SA (at 8,
11, and 14 Hz; Y. de Conchy & N. Cornilleau 2011, private
communication) was corrected by an interpolation of these
points between the highest SC frequency and the 4th point of
the SA spectra. The linear interpolation between log10 P (f ) and
log10 f is possible as far as the spectra follow a power law at
these frequencies. An example of a raw spectrum without the
correction can be found in Figure 2.

3. ALGEBRAIC DESCRIPTION OF TURBULENT
SPECTRA AT SCALES SMALLER THAN ρi AND λi

3.1. Exponential Model

Here we propose a model to describe the whole turbulent
spectrum at scales smaller than ρi and λi and down to a fraction
of the electron scales with the smaller possible number of
parameters, namely, an exponential with a characteristic scale
ℓd and with a power-law pre-factor

E(k⊥ ) = Ak−α
⊥ exp(− k⊥ ℓd ). (1)

This exp model has three free parameters: the amplitude A, the
spectral index α, and the cutoff or “dissipation” scale ℓd .

We start by fitting the model (1) to the 100 observed
spectra (with an S/N > 3, as explained in Section 2) for k⊥
corresponding to f > 3 Hz (see vertical dotted line in Figure 1),
assuming that the three parameters have independent variations.

Figure 2 gives the fit with the most intense spectrum of
Figure 1 as a function of the wavenumber P (k⊥ ) = P (f )V/2π ,
which is determined using the Taylor hypothesis and the energy
conservation law

∫
P (k⊥ )dk⊥ =

∫
P (f )df . Green crosses

show the Morlet wavelet spectrum (Torrence & Compo 1998)

2

Average of 100 magnetic energy 
spectra from Alexandrova et al 

(2012).

scaled spectra may be nearly superposed as shown in
Fig. 2(b).

One expects that the spectral level, P0, depends on the
solar-wind kinetic, thermal, or magnetic energy. The scat-
ter plots shown in Figs. 3(a) and 3(b) indicate a clear
power-law dependence of P0 on the magnetic energy and
a less clear dependence on the kinetic energy (and thermal
energy, not shown).

To understand the meaning of the observed dependence
on the magnetic energy, one may use a Kolmogorov-like
phenomenology. Suppose first that the solar-wind mag-
netic turbulence dissipates through an effective diffusion
mechanism of !!!B (! being a probably turbulent mag-
netic diffusivity) and second that the observed turbulence
is quasistationary. In such a case, there is a balance be-
tween the energy input from nonlinear interactions at large
scales and the energy drain from the dissipation at small
scales. This implies that the energy transfer rate " depends

on the dissipation scale ‘d as " ¼ !3‘#4
d ; thus P0 ! "2=3 !

‘#8=3
d . The dependences observed in Figs. 3(c) and 3(d),

P0 !ð1=fciÞ#2:8 and P0 ! ##3:2
e , are close to the pre-

diction of this phenomenological model. More statistics
are needed to confirm the observed exponents. We can
state, however, that the observed dependences imply that
#e and/or fci and/or fce play an important role in the
dissipation processes in collisionless plasmas. Let us now
confirm these results.

FIG. 2 (color online). (a) Magnetic spectra for seven time
periods of 42 min; spread of fci;e for the seven intervals is
shown. (b) k spectra normalized over P0; characteristic wave
numbers, k#i

¼ 1=#i, etc., are shown.

FIG. 3. Relative spectral intensity P0 as a function of
(a) magnetic and (b) kinetic energies; (c) P0 as a function of
the ion cyclotron period and (d) the electron gyroradius. Linear
fits with corresponding slopes are shown by solid lines.

FIG. 1 (color online). Top: magnetic power spectral density for
interval 5, measured by three instruments of Cluster in the solar
wind: FGM (up to 1 Hz), STAFF-SC (up to 10 Hz), and STAFF-
SA (f & 8 Hz, solid line: initial spectrum, open circles: spec-
trum after the noise subtraction). Vertical bars indicate plasma
kinetic scales, where f$i;e

correspond to the Doppler-shifted $i;e

and f#i;e
to #i;e. Power laws f

#1:7 and f#2:8 are shown. The dash-

dotted line indicates exponential fit ! exp½#aðf=f0Þ0:5(, with
f0 ¼ f#e

and the constant a ’ 9. Bottom: compensated spectrum

by f1:7 (solid line), f2:8 (dashed line), and by the exponential
(dash-dotted line).

PRL 103, 165003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 OCTOBER 2009

165003-3

In situ magnetic energy spectrum measured 
by Cluster [Alexandrova et al (2009)]



Evidence of low frequency, oblique fluctuations

To determine unambiguously the nature of the turbu-
lence and its anisotropies, we apply the k-filtering
technique to each frequency in the interval ½fmin; fmax" #
½0:04; 2" Hz in Fig. 2. The limit fmax is imposed by the
need to limit spatial aliasing, while fmin is fixed so that the
wave vectors are determined with an accuracy better than
15% [21]. By estimating the full wave vector(s) for each
frequency fsc, one can transform the quantity Pð!sc;kÞ
into Pð!plas;kÞ after correcting for the Doppler shift

!plas ¼ !sc ' k:Vf. The quantity Pð!plas;kÞ can then be

used to obtain both the dispersion relation!plas ¼ !plasðkÞ
and the integrated spectra P(ðkÞ ¼ R

Pð!plas;kÞd!plas.

Both quantities can be compared directly to theoretical
predictions so as to determine unambiguously the actual
nature of the turbulence.

Figure 4 shows clearly that the wave vectors are highly
oblique with respect to B0, h!kBi# 88). The slight de-
parture from this value at low frequency is due to a larger
uncertainty (# 15)) at large scales [21]. This result proves
that the turbulence is strongly anisotropic (i.e., kk * k?).
The wave vectors form moderate angles with the SW flow,
h!kVf

i# 40) (results from the third time interval are

slightly different and show a quasialignment with the
flow). The finite angles !kVf

and their relative variation

with frequency might lead to significant distortions in the k
spectra if they were computed by using the Taylor frozen-
in-flow approximation [4,29].
Figure 5 displays the observed dispersion relations com-

pared to linear solutions of the Maxwell-Vlasov equations,
calculated by using the observed plasma parameters of
Table I. In addition to the uncertainty in the wave vector
determination [18,21], we used 10% uncertainty on the
flow to estimate the error bars plotted in this figure [16].
We can see clearly that the turbulence cascades following
the KAW mode in the scale range ½0:04; 2"k?!i, covering
both the transition and the Kolmogorov inertial ranges,
where the proton Landau damping dominates over the
electron Landau and proton cyclotron dampings. The ob-
served dispersion relations lie in the diagram far from the
curve of the fast magnetosonic mode. We recall that, in a
hot plasma (here "i # 1:7) and highly oblique propaga-
tion, the fast mode is modified by the gyroresonances,
splitting into the different branches of Bernstein modes
[30]. Whether the turbulence remains quasistationary (i.e.,
! * !ci) for scales k?!i + 1, as suggested in Ref. [7], or
develops high frequency fluctuations (!#!ci), requires
probing to much smaller scales than those studied here.
This, unfortunately, cannot be done with the available data
(this regime should be observable by, e.g., the magneto-
spheric multiscale mission). An immediate consequence of
these results is that the damping of turbulence and heating
of the protons will arise most likely via Landau damping
and not by cyclotron resonances [25,26,31].
Figure 6 shows the k spectra integrated over the tem-

poral frequencies !plas [5,18] (see [21] for details). The

spectra show that the turbulence cascades perpendicularly

FIG. 3 (color online). Bz spectra measured by FGM (blue
curve) and STAFF-SC (green curve) in the despun inverted
system of reference from 06:15 to 06:25 (flattening for f ,
3 Hz is due to hitting the noise floor of the FGM). The black
dotted line is the in-flight sensitivity floor of STAFF-SC.

FIG. 4 (color online). Angles!kB (diamonds) and!kVf
(dots)

with related error bars as estimated by using the k-filtering
technique.

FIG. 5 (color online). Observed dispersion relations (dots),
with estimated error bars, compared to linear solutions of the
Maxwell-Vlasov equations for three observed angles !kB (the
dashed lines are the damping rates). The black curves (Lp;e) are
the proton and electron Landau resonances ! ¼ kkVthi;e, and the

curves Cp are the proton cyclotron resonance ! ¼ !ci ' kkVthi

(the electron cyclotron resonance is also plotted, but it lies
expectedly out of the plotted frequency range).
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week ending
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To determine unambiguously the nature of the turbu-
lence and its anisotropies, we apply the k-filtering
technique to each frequency in the interval ½fmin; fmax" #
½0:04; 2" Hz in Fig. 2. The limit fmax is imposed by the
need to limit spatial aliasing, while fmin is fixed so that the
wave vectors are determined with an accuracy better than
15% [21]. By estimating the full wave vector(s) for each
frequency fsc, one can transform the quantity Pð!sc;kÞ
into Pð!plas;kÞ after correcting for the Doppler shift

!plas ¼ !sc ' k:Vf. The quantity Pð!plas;kÞ can then be

used to obtain both the dispersion relation!plas ¼ !plasðkÞ
and the integrated spectra P(ðkÞ ¼ R

Pð!plas;kÞd!plas.

Both quantities can be compared directly to theoretical
predictions so as to determine unambiguously the actual
nature of the turbulence.

Figure 4 shows clearly that the wave vectors are highly
oblique with respect to B0, h!kBi# 88). The slight de-
parture from this value at low frequency is due to a larger
uncertainty (# 15)) at large scales [21]. This result proves
that the turbulence is strongly anisotropic (i.e., kk * k?).
The wave vectors form moderate angles with the SW flow,
h!kVf

i# 40) (results from the third time interval are

slightly different and show a quasialignment with the
flow). The finite angles !kVf

and their relative variation

with frequency might lead to significant distortions in the k
spectra if they were computed by using the Taylor frozen-
in-flow approximation [4,29].
Figure 5 displays the observed dispersion relations com-

pared to linear solutions of the Maxwell-Vlasov equations,
calculated by using the observed plasma parameters of
Table I. In addition to the uncertainty in the wave vector
determination [18,21], we used 10% uncertainty on the
flow to estimate the error bars plotted in this figure [16].
We can see clearly that the turbulence cascades following
the KAW mode in the scale range ½0:04; 2"k?!i, covering
both the transition and the Kolmogorov inertial ranges,
where the proton Landau damping dominates over the
electron Landau and proton cyclotron dampings. The ob-
served dispersion relations lie in the diagram far from the
curve of the fast magnetosonic mode. We recall that, in a
hot plasma (here "i # 1:7) and highly oblique propaga-
tion, the fast mode is modified by the gyroresonances,
splitting into the different branches of Bernstein modes
[30]. Whether the turbulence remains quasistationary (i.e.,
! * !ci) for scales k?!i + 1, as suggested in Ref. [7], or
develops high frequency fluctuations (!#!ci), requires
probing to much smaller scales than those studied here.
This, unfortunately, cannot be done with the available data
(this regime should be observable by, e.g., the magneto-
spheric multiscale mission). An immediate consequence of
these results is that the damping of turbulence and heating
of the protons will arise most likely via Landau damping
and not by cyclotron resonances [25,26,31].
Figure 6 shows the k spectra integrated over the tem-

poral frequencies !plas [5,18] (see [21] for details). The

spectra show that the turbulence cascades perpendicularly

FIG. 3 (color online). Bz spectra measured by FGM (blue
curve) and STAFF-SC (green curve) in the despun inverted
system of reference from 06:15 to 06:25 (flattening for f ,
3 Hz is due to hitting the noise floor of the FGM). The black
dotted line is the in-flight sensitivity floor of STAFF-SC.

FIG. 4 (color online). Angles!kB (diamonds) and!kVf
(dots)

with related error bars as estimated by using the k-filtering
technique.

FIG. 5 (color online). Observed dispersion relations (dots),
with estimated error bars, compared to linear solutions of the
Maxwell-Vlasov equations for three observed angles !kB (the
dashed lines are the damping rates). The black curves (Lp;e) are
the proton and electron Landau resonances ! ¼ kkVthi;e, and the

curves Cp are the proton cyclotron resonance ! ¼ !ci ' kkVthi

(the electron cyclotron resonance is also plotted, but it lies
expectedly out of the plotted frequency range).

PRL 105, 131101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

24 SEPTEMBER 2010

131101-3

Angle between k and B and k and 
VSW. From Sahraoui et al (2010).

In situ solar wind dispersion 
relation. From Sahraoui et al 

(2010).



In situ magnetic helicity suggests KAWs

• Magnetic helicity is a measure of the twist 
of the magnetic field.

• Fluctuating magnetic helicity is defined as 

• Normalizing and converting to Fourier 
space yields the normalized fluctuating 
magnetic helicity

• Measurements consistent with 95% power 
in KAW fluctuations [Klein et al (2014)].
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0
m =

Z
dr�A · �B
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m(k)

|B(k)|2

The Astrophysical Journal, 734:15 (10pp), 2011 June 10 Podesta & Gary
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Figure 2. Example of the reduced magnetic helicity spectrum σm (upper left), trace magnetic power spectrum (lower left), magnetic helicity spectrum as a function of
angle θ between Bloc and the flow direction (upper right), and the trace magnetic power spectrum as a function of angle (lower right) observed during the first northern
polar pass. The physical units of the power spectrum in the lower right are arbitrary. The dashed line indicates the approximate scale where kρi = 1. The proton beta
for this interval is βp ≃ 1.7.

(The complete figure set (30 images) is available in the online journal.)
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Figure 3. Example of the reduced magnetic helicity spectrum σm (upper left), trace magnetic power spectrum (lower left), magnetic helicity spectrum as a function of
angle (upper right), and the trace magnetic power spectrum as a function of angle (lower right) observed during the first southern polar pass. The physical units of the
power spectrum in the lower right are arbitrary. The dashed line indicates the approximate scale where kρi = 1. The proton beta for this interval is βp ≃ 1.4.

(The complete figure set (62 images) is available in the online journal.)
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Normalized fluctuating magnetic helicity 
from Podesta & Gary (2011).
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where ⟨· · ·⟩ denotes an ensemble average. Events are
selected by imposing thresholds on PVI, leading to a
methodology that is comparable to classic magnetic dis-
continuity identification in both solar wind observations
and numerical simulations [27, 28].

FIG. 1. Mean Tp conditioned on the distance from (a) events
identified using the PVI statistic. These events are linked
to elevated temperatures. The temperature profile associated
with 0 ≤ ℑ < 1 is reproduced (b) to highlight its local mini-
mum. These low value fluctuations are heated upon encoun-
tering current sheets. For reference, the dashed line represents
the mean Tp for the entire dataset.

In oder to study heating near discontinuities, we com-
pute averages of Tp conditioned on the distance from PVI
events which exceed a threshold value θ:

T̄p(∆r, θ) ≡ ⟨Tp(rℑ +∆r)|θ ≤ ℑ(rℑ) < θ + 1⟩ (3)

where rℑ is the position of a PVI event and ∆r is the
spatial lag measured relative to rℑ, obtained assuming
frozen-in flow such that ∆r ≈ −vsw∆t.
Figure 1 shows the conditionally averaged proton tem-

perature in the vicinity of a PVI event for selected values
of θ. For thresholds above and including θ = 2, there is a
peak in the average Tp at the location of discontinuities,
as established in [15]. The steep fall-off at nearby spatial
lags produces a defined local maximum with a width of
about 105 km, which is equivalent to around a tenth of
the turbulence correlation scale λc. This local Tp max-
imum is more pronounced near stronger discontinuities,
as seen when the PVI threshold is raised. The averaged
Tp then transitions to a gently declining plateau, which
is distinct for each θ value since the strongest PVI events
are associated with the highest temperatures. Analysis
of the data suggests that once a strong discontinuity is
identified, there is an elevated probability of finding ad-
ditional strong events within several correlation lengths
(of order 106 km). The net effect of this clustering, or
non-Poisson property [see 29], of strong PVI events is
that the surrounding plasma is, on average, hotter.
The cumulative mean waiting distances between non-

Gaussian events are consistent with the interpretation of

clustering PVI events. Beyond a spatial separation of
around 0.1λc, there is an increased likelihood of encoun-
tering another discontinuity. Therefore, we interpret the
central peak of Tp enhancement in Fig. 1 as the result
of local heating by individual coherent structures, while
the broader plateau of elevated temperature is the result
of an increased nearby density of strong coherent struc-
tures. This clustering of heating events is indicative of
a correlated inertial range intermittency process, in con-
trast to an uncorrelated Poisson heating mechanism.

It should be noted that all the conditional average Tp

profiles with ℑ ≥ 1 lie well above the unconditioned aver-
age value. Hence, it follows that the profile correspond-
ing to low value fluctuations (in the range 0 ≤ ℑ < 1)
must lie below the average Tp value, as shown in Fig. 1.
However, it is not obvious that these fluctuations should
produce a central local minimum in the conditional av-
erage temperature profile. These low level fluctuations
are the smoothest regions and represent the closest ap-
proximation to uniform plasma conditions [28]. Since the
most uniform samples are cooler than the surrounding
plasma, our results suggest the dominant sources of tur-
bulence heating are unlikely to be found using methods
that assume a uniform plasma.

Figure 2 shows the conditionally averaged Tp depen-
dence on the magnitude of spatial separation from the
central discontinuity |∆r|, for three PVI thresholds. This
expanded scale allows the two-tiered structure of the av-
eraged temperatures to be more manifest. The data is
well approximated by linear fits, and the obtained tem-
perature gradients confirm the presence of an enhanced
Tp inner core and an extended (> λc) heated region.

In order to study the macroscopic behavior of inter-
mittent heating, the data is divided into 10 hour samples

FIG. 2. Mean Tp conditioned on the distance from events
identified using the PVI statistic. The plots consist of a core
component of enhanced temperature and an extended heated
outer component. These are both well approximated by linear
scaling and the obtained temperature gradients are steepest
near the strongest (highest θ) coherent structures.

Intermittency in the solar wind

!ðt; "Þ ¼ arccos
!
BðtÞ $Bðtþ "Þ
jBðtÞjjBðtþ "Þj

"
: (1)

We have selected large rotations of the magnetic field,
namely !> 100&, and rotated the data into a minimum
variance reference frame [21], defined so that one axis is
aligned with the direction of minimum variation of B
(minimum variance direction). Figure 2 shows an example
of a discontinuity associated with an abrupt rotation of
the magnetic field vector [panel (c)], as computed from
Eq. (1) fixing the time lag " ¼ 0:1 s. The event starts at
22:04:27.6 UT, 87.6 s after the beginning of the time
interval displayed in Fig. 1, and ends at 22:04:28 UT.
Therefore the total time duration is !t' 0:4 s. If we
assume that the discontinuity is convected by the plasma
flow, the spatial size of the structure along the flow direc-
tion is d' 256 km, as compared with #p ( 170 km or
di( 130 km.

Figure 2(a) shows the magnetic field in the local dis-
continuity frame LMN obtained by projecting the GSE
components into the minimum variance reference frame.
Near the peak of the rotation, jBj ( 0 [Fig. 2(b)]. The
BL component (blue solid line) lies along the maximum
variance direction and exhibits a large rotation. The BM

component (red dashed line) is along the medium variance
direction and shows a bipolar signature, while the BN

component (green dotted line), aligned with the minimum

variance direction, remains roughly constant and close to
zero. The discontinuity that passed Cluster 2 appears to be
a thin current sheet that lies in the plane perpendicular to
the average field hB0i.
We also investigated a second quasistationary interval

detected on 2004-01-10 from 06:29:00 UT to 06:31:40 UT
during which the four Cluster spacecraft formed a regular
tetrahedron with average separation of '200 km [22].
Rapid rotations of B are seen at all four spacecraft. In this
event the solar wind has a plasma density of np ' 15 cm)3

and a speed ofV ' 550 km=s [22]. In Fig. 3 we show a near
simultaneous observation of a thin current sheet by both
Cluster 2 (red dashed line) and Cluster 4 (blue solid line),
whose separation projected along the antiflow direction
(x axis in GSE) is only 20 km. The angle of rotation
!ðt; "Þ is plotted in Fig. 3(e) for a time lag " ¼ 0:035 s.
The magnetic field rotation was detected by neither Cluster

a

b

c

FIG. 2 (color online). STAFF-Cluster 2 observation of a thin
current sheet. The magnetic field components in the local current
sheet reference frame computed via a minimum variance analy-
sis are reported in panel (a): the BL component is along the
current sheet and shows a large rotation (blue solid line), BN is
parallel to the normal to the current sheet and is close to zero
(green dotted line), and BM is the out-of-plane component (red
dashed line) whose bipolar signature suggests the presence of a
Hallmagnetic field generated by in-plane currents [35]. Intensity
of the magnetic field [panel (b)]. The angle of rotation of the
magnetic field vector computed as the angle between BðtÞ and
Bðtþ "Þ, where the time lag is " ¼ 0:1 s, is plotted in panel (c).
The abscissa of the panels indicates the time in seconds from
the beginning of the analyzed time interval, i.e., 22:03:00 UT
(see Fig. 1).

a

b

FIG. 1 (color online). Magnetic field as observed by Cluster 2
in fast solar wind. The data are from the flux gate magnetometer.
Panel (a) shows the interplanetary magnetic field components in
the Geocentric Solar Ecliptic (GSE) coordinate system: the Bx

component (middle, blue line) is anti-aligned to the direction of
plasma flow, the Bz component (top, red line) is oriented along
the direction of the Ecliptic North Pole, and By (bottom, green
line) completes the coordinate system. Panel (b) reports the
magnetic field magnitude. During this time interval the inter-
planetary magnetic field (the Parker spiral) makes an angle of
roughly 60& with respect to the direction of plasma flow.
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A current sheet observed in 
the solar wind at kinetic 
scales. From Perri et al 
(2012)
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identified by the PVI method, is shown in Figure 1(c). Both
simulations reproduce the solar wind data quite accurately.

The last two panels have several implications: the two HMHD
simulations, even though they are characterized by different val-
ues of plasma β, mean magnetic field, and correlation length,
can capture the essential statistical features of the frequency
of occurrence of solar wind structures or discontinuities. This
suggests a sort of universal behavior, particularly since the sim-
ulations and solar wind probably have very different (effective)
Reynolds numbers. Good agreement is found for scales smaller
than around ∼ 1λc. Beyond this, departures are not surprising
since the large-scale structures in the solar wind are very differ-
ent from those in the simulations. The box contains only ∼ 4–8
correlation lengths, and has no large-scale features other than
periodicity. The similarity of the distributions at scales < λc,
shown in Figures 1(b) and (c), provides clear evidence that both
the discontinuities (b) and the intermittent structures (c) that
appear in the simulations have a statistical resemblance to the
analogous structures found in the solar wind at these scales.
Panel (a) links the two, showing that discontinuities and in-
termittency may be related. These results support the possible
link between the intermittent nature of MHD turbulence and the
distribution of solar wind discontinuities.

4. ANALYSIS OF THE STRUCTURE OF THE PDFS

The similarity of the WTs motivates us to look now in
further detail at the PDFs of the increments. For inertial range
separations the increments are well known (e.g., Marsch & Tu
1994; Sorriso-Valvo et al. 1999) to exhibit departures from
a Gaussian distribution, with enhanced probability of large
values signifying intermittency (Monin & Yaglom 1975). PDFs
have also been studied in simulations (Politano et al. 1998;
Biskamp & Muller 2000). Here, we subject both solar wind and
simulation data to exactly the same analysis and provide a direct
comparison.

For the solar wind case, we divided the original ACE magnetic
field data into subintervals of 12 hr and normalized the variable
|∆B| and its components to the standard deviations within each
subinterval (Sorriso-Valvo et al. 1999; Bruno et al. 2001). A
separation of ∆t = 4 minutes is employed, as above. For both
3D and 2D simulations the separation ∆s is chosen so that
∆s/λc ≈ 0.08. This corresponds to the solar wind case using
∆t = 4 minutes and frozen-in flow at 400 km s−1. At these
scales, the signatures of intermittency are expected. In fact, we
have examined (not shown here) a range of separations and
found that the PDFs make a transition from Gaussian at large
scales to non-Gaussian at small scales, fully consistent with
standard representations of intermittency in turbulence (Marsch
& Tu 1994; Sorriso-Valvo et al. 1999; Burlaga et al. 2003). The
bursty fluctuations of the PVI series contribute to the fat tails in
the distribution at ∆t = 4 minutes.

In Figure 2, we show PDFs of the z component of the vector
∆B for ACE data, and for two simulation runs—a 2D MHD run
and a 3D HMHD run. The argument of each PDF is normalized
in each case by its standard deviation. These PDFs are compared
to a unit-variance Gaussian distribution.

The inertial range solar wind PDF has a typical shape with a
narrow peak and fat tails (Marsch & Tu 1994). The 3D HMHD
simulation PDF presents an interesting comparison to the solar
wind case: both are non-Gaussian, but the 3D simulation lies
closer to the Gaussian reference curve at all values. The solar
wind is more intermittent than the simulation, possibly because
the simulation has modest resolution (∼ two decades) relative

10-3
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10-1

100

-6 -4 -2 0 2 4 6
∆Bα / σ

PDF of increments

SIM 2D
ACE data

SIM 3D
Gaussian

Figure 2. The PDFs of normalized increments designated by ∆Bα/σ , where
for the ACE data this indicates ∆Br/σ12h, the radial magnetic field increment
at 4 minutes separation evaluated over 12 hr samples and normalized by the
12 hr standard deviation (green); for the 3D HMHD simulation this becomes
∆Bz/σ , increments of a perpendicular component (z) normalized by its standard
deviation (blue); for the 2D simulation this becomes the composite PDF of
∆Bx/σx and ∆By/σy , the standard-deviation-normalized increments of the two
magnetic components perpendicular to the uniform applied magnetic field (red).
For comparison a unit variance Gaussian is also shown (pink). The values of
the kurtosis are: 14 for the ACE data, 10 for the 2D simulation, and 5 for the 3D
HMHD simulation.

to the broader-band (∼ three decades) solar wind. That is, the
effective Reynolds number is larger in the solar wind case.
The 2D MHD simulation lies closer to the solar wind case
at all values. This may be due to the higher, approximately
three-decade resolution of the 2D case. With higher bandwidth,
more singular localized current structures can form, leading
to a more non-Gaussian PDF. The better agreement might
also be due to spectral anisotropy: the solar wind is “older”
and possibly more anisotropic than the 3D simulation, which
started with an isotropic initial condition. There has been a
frequent suggestion (Bieber et al. 1994, 1996) that the solar wind
contains a substantial admixture of highly anisotropic quasi-2D
fluctuations.

The solar wind and simulation PDFs (Figure 2) are very
similar. Each shows transition from sub-Gaussian to super-
Gaussian behavior at almost the same values of its argument.
These transitions occur at about ± 1σ and near ± 3σ . At values
with the band |∆Bα| < 1σ (see Figure 2) all the three PDFs are
super-Gaussian. In the bands defined by 1σ < |∆Bα| < 3σ , all
the three PDFs are sub-Gaussian. At larger values |∆Bα| > 3σ
all the three PDFs are super-Gaussian—these are the fat tails
that are a familiar signature of intermittency.

Finally, we examine the 2D simulation to identify which
kind of structure contributes within each of these three bands,
designated as regions I, II, and III. Figure 3 shows the PDFs
of the out-of-plane electric current density Jz relative to the
reference Gaussian. This PDF is almost a precise match for
the PDF of 2D inertial range increments in Figure 2. Now
we numerically select points that contribute to each band, and
produce an image consisting of those points. We superpose
this image with a plot of magnetic field lines in the x–y plane.
The results for regions I, II, and III are shown separately in
Figure 3. A physically appealing interpretation emerges: region
I consists of very low values of fluctuations that lie mainly
in the lanes between magnetic islands. Region II consists of
sub-Gaussian current cores that populate the central regions

PDFs of 4 minute lag of 
radial solar magnetic field 
(green), 2D MHD, and 3D 
HMHD simulations. From 
Greco et al (2009)

Evidence of local heating in the 
solar wind conditioned on PVI. 
From Osman et al (2012)



Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).

• Current sheets also form at ion scales and 
may be responsible for dissipation. 

• Which mechanism is dominant in weakly 
collisional kinetic plasmas?
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Alfven and Slow cascades 
merge at k��i � 1

(Schekochihin et al. 2009)

Dissipation Range:
• Kinetic Alfven Waves

(Leamon et al. 1998, 1999; Quataert & 

Gruzinov 1999; Howes et al. 2008a,b,

2011; Schekochihin et al. 2009)

Nonlinear wave-wave interactions 
well described by fluid theory

(Howes and Nielson 2011)
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Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).

• Current sheets also form at ion scales and 
may be responsible for dissipation. 

• Which mechanism is dominant in weakly 
collisional kinetic plasmas?
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Dissipation of  Turbulent Fluctuations

(Howes et al. 2011; Schekochihin et al. 

2009; Sahraoui 2010)

Ion Landau Damping peaks 
  around k��i � 1

Inertial Range:
•!Negligible damping of

Alfven wave cascade
(Schekochihin et al. 2009)
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somewhat beyond (Howes et al. 2011)� k�7/3
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Gyrokinetic Turbulence



Gyrokinetics
What is gyrokinetics?

• Average quantities over the gyro-motion of 
particles and describe the evolution of rings 
rather than particles

• Gyro-averaged and ordered version of full 
Vlasov-Maxwell kinetic theory

• Basic ordering parameters:

Why is it useful?

• Removes high frequency (> Ωi) fluctuations and reduces the problem from 6 to 5 
dimensions

• Retains non-linear physics and kinetic effects (FLR, Landau damping, collisions)

ϵ = ρi/L ∼ ω/Ωi ∼ k∥/k⊥ ≪ 1



Gyrokinetic equations
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AstroGK and GENE

• Based on mature fusion gyrokinetics codes 

• Eulerian initial-value codes with periodic boundary 
conditions in slab geometry

• Evolves 5D phase space for each species

• Fully non-linear, with number, momentum, and 
energy conserving collision operators
 

• Driven at outer-scale with Langevin antenna 
current coupled to parallel vector potential—injects 
Alfvén like waves at outer-scale

• Real mass ratio, βp = 1, Tp = Te, weakly collisional 
(νs << ωmin) 

• Have been rigorously compared to experimental 
results and un-ordered kinetic codes (PIC)

Internal view of the JET tokamak 
in the UK.



Ion scale spectrum

Energy spectra from AstroGK simulation 
from Howes et al (2011).

• Ion scale simulation, 

• Spectrum agrees will with solar wind 
observations

• Field relationships are consistent with KAWs

• Heating broadly consistent with Landau 
damping and an ion entropy cascade

• Insufficient resolution to determine behavior 
at electron scales

k?⇢i 2 [1, 42]

(nx, ny, nz, nE, nλ) = (128, 128, 128, 16, 32)



Electron scale spectrum
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Weakened Cascade
AstroGK

One dimensional magnetic energy spectra 
from AstroGK averaged over three turn-

around times (black), weakened cascade 
model (blue dash-dotted), and the empirical 
form from Alexandrova et al (2012). From 

TenBarge et al (2013).

• Electron scale simulation,

• Averaged spectrum agrees well with in 
situ solar wind observations

• Also reproduced by the weakened 
cascade model

• Electron scale current sheets form 
naturally 

• Measured heating rate consistent with 
enhanced Landau damping in current 
sheets

k?⇢i 2 [5, 105]

(nx, ny, nz, nE, nλ) = (64, 64, 32, 16, 32)



Electron collisional heating [TenBarge et al (2013)]

The Astrophysical Journal Letters, 771:L27 (6pp), 2013 July 10 TenBarge & Howes
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Figure 3. (a) Volume filling fraction of current sheets satisfying j > jmax/3 in percent (black dashed) and the electron collisional heating rate Qe (red solid). (b) The
injected antenna power (magenta dotted) and the total turbulent energy, EKAW, (blue dash-dotted). (c) Cross correlations between the electron heating rate and filling
fraction (black solid), antenna power (magenta dotted), and EKAW (blue dash-dotted).
(A color version of this figure is available in the online journal.)

Figure 4. Measured heating of the electrons from the simulation by perpen-
dicular wavenumber, Qe(k⊥) (solid), an estimate of the electron heating based
on linear wave-particle damping Qwp(k⊥) (dotted), and the Ohmic heating rate
Qη(k⊥) (dashed).
(A color version of this figure is available in the online journal.)

6. ELECTRON HEATING BY SCALE

In Figure 4, we present a plot of the electron collisional
heating rate by perpendicular wavenumber, Qe(k⊥) (solid),
averaged over 1.5τ0 ! t ! 4.1τ0, where error bars represent
the variance over the interval. The instantaneous shape of the
heating curve is similar to the average. This plot shows that the
electron heating is nearly constant over all scales, with about
half of the total heating occurring at scales k⊥ρe < 1. The
turn-down at k⊥ρi > 105 is an artifact due to the diminishing
number of Fourier modes in the corner beyond the fully resolved
simulation domain.

As a function of k⊥, we may predict the collisionless damping
of the turbulent fluctuations by resonant wave-particle interac-
tions in our simulation using Qwp(k⊥) = 2γ (k⊥)EKAW(k⊥),
where γ is the linear kinetic damping rate of kinetic Alfvén
waves (dominated by electron Landau damping). This predic-
tion for the wave-particle interaction heating rate requires in-
tegration over k∥, where parallel is with respect to the local
magnetic field and is typically determined via structure func-
tions or wavelets. To avoid the complications of determin-
ing the local magnetic field direction, we use frequency as a
proxy for the parallel wave vector since ω ∝ k∥ for kinetic
Alfvén waves (TenBarge & Howes 2012). This prediction for
wave-particle damping, plotted in Figure 4 (dotted), admits no
free parameters, yet it agrees well with the measured colli-
sional electron heating (solid): the integrated, total predicted
electron heating is within 4% of the collisional heating diag-
nosed in AstroGK. The slight excess of wave-particle damp-
ing at 5 < k⊥ρi < 40 and of electron collisional heating at
k⊥ρi > 40 is consistent with the action of the electron en-
tropy cascade (Schekochihin et al. 2009). Through the entropy
cascade, energy removed by electron Landau damping at 5 <
k⊥ρi < 40 is expected to appear as collisional heating at higher
wavenumbers.

We also compute the Ohmic heating rate Qη = ηj 2, where
η = 0.38(4π )νeid

2
e /c2 is the Spitzer resistivity (Spitzer &

Härm 1953), νei = νe is the electron–ion collision frequency,
de = c/ωpe is the electron inertial length, and ωpe is the
electron plasma frequency. The Ohmic heating rate is plotted
(dashed) in Figure 4, clearly Qη ≪ Qwp ≃Qe. Theory predicts
negligible Ohmic heating for a weakly collisional plasma, since
electron–ion collisions are insufficient to significantly heat the
electrons. Therefore, Ohmic dissipation of the current cannot
account for the observed electron heating in the simulation,
despite the strong correlation between current sheet filling
fraction and heating rate.
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Figure 3. (a) Volume filling fraction of current sheets satisfying j > jmax/3 in percent (black dashed) and the electron collisional heating rate Qe (red solid). (b) The
injected antenna power (magenta dotted) and the total turbulent energy, EKAW, (blue dash-dotted). (c) Cross correlations between the electron heating rate and filling
fraction (black solid), antenna power (magenta dotted), and EKAW (blue dash-dotted).
(A color version of this figure is available in the online journal.)

Figure 4. Measured heating of the electrons from the simulation by perpen-
dicular wavenumber, Qe(k⊥) (solid), an estimate of the electron heating based
on linear wave-particle damping Qwp(k⊥) (dotted), and the Ohmic heating rate
Qη(k⊥) (dashed).
(A color version of this figure is available in the online journal.)

6. ELECTRON HEATING BY SCALE

In Figure 4, we present a plot of the electron collisional
heating rate by perpendicular wavenumber, Qe(k⊥) (solid),
averaged over 1.5τ0 ! t ! 4.1τ0, where error bars represent
the variance over the interval. The instantaneous shape of the
heating curve is similar to the average. This plot shows that the
electron heating is nearly constant over all scales, with about
half of the total heating occurring at scales k⊥ρe < 1. The
turn-down at k⊥ρi > 105 is an artifact due to the diminishing
number of Fourier modes in the corner beyond the fully resolved
simulation domain.

As a function of k⊥, we may predict the collisionless damping
of the turbulent fluctuations by resonant wave-particle interac-
tions in our simulation using Qwp(k⊥) = 2γ (k⊥)EKAW(k⊥),
where γ is the linear kinetic damping rate of kinetic Alfvén
waves (dominated by electron Landau damping). This predic-
tion for the wave-particle interaction heating rate requires in-
tegration over k∥, where parallel is with respect to the local
magnetic field and is typically determined via structure func-
tions or wavelets. To avoid the complications of determin-
ing the local magnetic field direction, we use frequency as a
proxy for the parallel wave vector since ω ∝ k∥ for kinetic
Alfvén waves (TenBarge & Howes 2012). This prediction for
wave-particle damping, plotted in Figure 4 (dotted), admits no
free parameters, yet it agrees well with the measured colli-
sional electron heating (solid): the integrated, total predicted
electron heating is within 4% of the collisional heating diag-
nosed in AstroGK. The slight excess of wave-particle damp-
ing at 5 < k⊥ρi < 40 and of electron collisional heating at
k⊥ρi > 40 is consistent with the action of the electron en-
tropy cascade (Schekochihin et al. 2009). Through the entropy
cascade, energy removed by electron Landau damping at 5 <
k⊥ρi < 40 is expected to appear as collisional heating at higher
wavenumbers.

We also compute the Ohmic heating rate Qη = ηj 2, where
η = 0.38(4π )νeid

2
e /c2 is the Spitzer resistivity (Spitzer &

Härm 1953), νei = νe is the electron–ion collision frequency,
de = c/ωpe is the electron inertial length, and ωpe is the
electron plasma frequency. The Ohmic heating rate is plotted
(dashed) in Figure 4, clearly Qη ≪ Qwp ≃Qe. Theory predicts
negligible Ohmic heating for a weakly collisional plasma, since
electron–ion collisions are insufficient to significantly heat the
electrons. Therefore, Ohmic dissipation of the current cannot
account for the observed electron heating in the simulation,
despite the strong correlation between current sheet filling
fraction and heating rate.
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Total heating of the electrons from the simulation 
(solid black), an estimate of the electron heating 
based on linear wave-particle damping (dotted 
blue), and the Ohmic heating rate (dashed red).

a) and b) time evolution of the collisional 
heating rate (red) compared to other energy 

diagnostics. c) Cross correlation between 
heating rate and other diagnostics. 
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4

Figure 3. Infrared locality functions for several shells kc, nor-
malized to the total nonlinear energy transfer through kc, ver-
sus the probe wavenumber kp⇢i. For the curves with kc⇢i & 5,
a change in slope is apparent when the probe kp crosses the
ion gyroradius scale.

For several kc shells, we show the corresponding IR lo-
cality functions ⇧ (kp|kc) /⇧ (kc|kc) in Fig. 3. By plotting
the curves versus the probe wavenumber kp instead of the
conventional ratio kp/kc, Fig. 3 highlights the existence
of a meaningful physical scale length at k?⇢i ⇠ 1, indi-
cating a lack of self-similarity. Indeed, the locality func-
tion curves for kc⇢i & 5 exhibit a transition in their slope
that occurs close to the ion gyroradius scale, kp⇢i ⇠ 1:
for kp⇢i > 1 the nonlinear energy transfer is rather non-
local, with a locality exponent between 2/3 and 1/3; for
kp⇢i < 1, a more local exponent of 4/3, as in Navier-
Stokes turbulence [27], is found. As a consequence of
this property, for 5 . kc . 51.2, nonlocal transfers me-
diated by fluctuations in the tail of the MHD range at
kp⇢i . 1 are responsible for at least 30% of the total en-
ergy transfer through these shells. Note that this does
not contradict the above observation that the net non-
linear transfer for large k? is local. Indeed, the nonlinear
triad k+p+q = 0 for such nonlocal interactions is char-
acterized by |q| ⌧ |k| , |p| and thus |k| ⇡ |p|, consistent
with a local net transfer between k and p. Finally, we
note that while all of the above statements were illus-
trated with results for the electron species, the nonlinear
ion energy transfer (not shown) exhibits the same char-
acteristics, though with an even more pronounced nonlo-
cality (exponent ⇠ 1/12), and at least 50% of the transfer
mediated by modes in the tail of the MHD range.

Collisional dissipation. Next, we study the spectral
properties of the collisional dissipation rate by measuring
the contribution of the collision term to the free energy
balance. The resulting graphs are presented in Fig. 4
for both electron and ion species, as well as their sum.
About 70% of the total dissipation is found to arise from
electron collisions, which exhibit a broad peak around
k?⇢i ⇠ 1 � 5. Qualitatively, this peak is consistent with
electron Landau damping acting on the magnetic energy
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Figure 4. Normalized, short-time averaged collisional dissi-
pation for electrons, ions, and its total value. Curves are
multiplied by k? so the area under the curve is proportional
to the energy dissipation rate.

spectrum shown in Figure 1. Despite peaking at these
relatively small k? wavenumbers, electron dissipation re-
mains strong throughout the spectrum, and begins to in-
tensify somewhat at k?⇢i & 30. At k?⇢i ⇠ 1, where ion
transit-time damping is expected to transfer field energy
to ion particle energy, there is in fact little ion heating. At
these scales the ion free energy (not shown) is comparable
to the magnetic fluctuation energy, but it is cascaded to
smaller scales in both position and velocity space, and is
dissipated close to the electron gyroradius scale (around
k?⇢i ⇠ 25). This observation is consistent with an ion
entropy cascade and the fact that ⌫i ⌧ ⌫e [9, 19, 28].
Taking into account both species’ contributions, we find
an essentially flat dissipation spectrum throughout the
kinetic wavenumber range, contrasting with some inter-
pretations of solar wind data [4, 5] which suggested that
the electron gyroradius scale acts as the dominant dissi-
pation scale.

Conclusions. In the present study, the first gyrokinetic
simulation of kinetic Alfvén wave turbulence coupling all
scales from the tail of the MHD range to the electron
gyroradius scale was performed, with the goal of analyz-
ing fundamental properties of nonlinear energy transfer
and collisional dissipation for parameters relevant to the
solar wind. It was found that nonlinear energy transfer
in the kinetic range, particularly for k?⇢i & 5, is con-
siderably more nonlocal than hydrodynamic turbulence,
as suggested by previous theoretical considerations [29],
and is to a significant percentage (>30%) mediated by
the tail of the MHD cascade just below k?⇢i ⇠ 1, while
the net energy transfer occurs mainly between nearest-
neighbor shells. For Te/Ti = 1 and �i = 1, similar to
the near-Earth solar wind, 70% of the injected energy
is dissipated through the electron species, whose dissi-
pation spectrum peaks around k?⇢i ⇠ 1 � 5, consistent
with electron Landau damping. The ion free energy, on
the other hand, is cascaded to small scales and dissipated
around k?⇢i ⇠ 25. These findings underscore the pres-
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Intermittency and Coherent Structures



Measuring intermittency in the simulation
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Identifying intermittency

PDF of the increments with a spatial 
lag Δr ~ 4 ρi (black, upper) and Δr ~ 

0.1 ρi (black, lower) and normal 
distributions (red).
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Intermittent structure identification

0 5 10 15 20
0

5

10

15

20

Jz

x/ρ i

y
/
ρ
i

 

 

−200

−150

−100

−50

0

50

100

150

200

PV I =
|�By|

�

✓ = cos�1


B(x) ·B(x+�r)

|B(x)||B(x+�r)|

�

Greco et al (2008) 

Tsurutani & Smith (1979) 

A comparison of methods to ID discontinuous structures
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We have selected large rotations of the magnetic field,
namely !> 100&, and rotated the data into a minimum
variance reference frame [21], defined so that one axis is
aligned with the direction of minimum variation of B
(minimum variance direction). Figure 2 shows an example
of a discontinuity associated with an abrupt rotation of
the magnetic field vector [panel (c)], as computed from
Eq. (1) fixing the time lag " ¼ 0:1 s. The event starts at
22:04:27.6 UT, 87.6 s after the beginning of the time
interval displayed in Fig. 1, and ends at 22:04:28 UT.
Therefore the total time duration is !t' 0:4 s. If we
assume that the discontinuity is convected by the plasma
flow, the spatial size of the structure along the flow direc-
tion is d' 256 km, as compared with #p ( 170 km or
di( 130 km.

Figure 2(a) shows the magnetic field in the local dis-
continuity frame LMN obtained by projecting the GSE
components into the minimum variance reference frame.
Near the peak of the rotation, jBj ( 0 [Fig. 2(b)]. The
BL component (blue solid line) lies along the maximum
variance direction and exhibits a large rotation. The BM

component (red dashed line) is along the medium variance
direction and shows a bipolar signature, while the BN

component (green dotted line), aligned with the minimum

variance direction, remains roughly constant and close to
zero. The discontinuity that passed Cluster 2 appears to be
a thin current sheet that lies in the plane perpendicular to
the average field hB0i.
We also investigated a second quasistationary interval

detected on 2004-01-10 from 06:29:00 UT to 06:31:40 UT
during which the four Cluster spacecraft formed a regular
tetrahedron with average separation of '200 km [22].
Rapid rotations of B are seen at all four spacecraft. In this
event the solar wind has a plasma density of np ' 15 cm)3

and a speed ofV ' 550 km=s [22]. In Fig. 3 we show a near
simultaneous observation of a thin current sheet by both
Cluster 2 (red dashed line) and Cluster 4 (blue solid line),
whose separation projected along the antiflow direction
(x axis in GSE) is only 20 km. The angle of rotation
!ðt; "Þ is plotted in Fig. 3(e) for a time lag " ¼ 0:035 s.
The magnetic field rotation was detected by neither Cluster

a

b

c

FIG. 2 (color online). STAFF-Cluster 2 observation of a thin
current sheet. The magnetic field components in the local current
sheet reference frame computed via a minimum variance analy-
sis are reported in panel (a): the BL component is along the
current sheet and shows a large rotation (blue solid line), BN is
parallel to the normal to the current sheet and is close to zero
(green dotted line), and BM is the out-of-plane component (red
dashed line) whose bipolar signature suggests the presence of a
Hallmagnetic field generated by in-plane currents [35]. Intensity
of the magnetic field [panel (b)]. The angle of rotation of the
magnetic field vector computed as the angle between BðtÞ and
Bðtþ "Þ, where the time lag is " ¼ 0:1 s, is plotted in panel (c).
The abscissa of the panels indicates the time in seconds from
the beginning of the analyzed time interval, i.e., 22:03:00 UT
(see Fig. 1).

a

b

FIG. 1 (color online). Magnetic field as observed by Cluster 2
in fast solar wind. The data are from the flux gate magnetometer.
Panel (a) shows the interplanetary magnetic field components in
the Geocentric Solar Ecliptic (GSE) coordinate system: the Bx

component (middle, blue line) is anti-aligned to the direction of
plasma flow, the Bz component (top, red line) is oriented along
the direction of the Ecliptic North Pole, and By (bottom, green
line) completes the coordinate system. Panel (b) reports the
magnetic field magnitude. During this time interval the inter-
planetary magnetic field (the Parker spiral) makes an angle of
roughly 60& with respect to the direction of plasma flow.
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current sheet and shows a large rotation (blue solid line), BN is
parallel to the normal to the current sheet and is close to zero
(green dotted line), and BM is the out-of-plane component (red
dashed line) whose bipolar signature suggests the presence of a
Hallmagnetic field generated by in-plane currents [35]. Intensity
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Bðtþ "Þ, where the time lag is " ¼ 0:1 s, is plotted in panel (c).
The abscissa of the panels indicates the time in seconds from
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in fast solar wind. The data are from the flux gate magnetometer.
Panel (a) shows the interplanetary magnetic field components in
the Geocentric Solar Ecliptic (GSE) coordinate system: the Bx

component (middle, blue line) is anti-aligned to the direction of
plasma flow, the Bz component (top, red line) is oriented along
the direction of the Ecliptic North Pole, and By (bottom, green
line) completes the coordinate system. Panel (b) reports the
magnetic field magnitude. During this time interval the inter-
planetary magnetic field (the Parker spiral) makes an angle of
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Fractal scaling
To quantify the intermittency and get a handle on the spatial structure, we

employ a common high-order multi-scale analysis to determine the fractal na-
ture of the turbulence:

Sm
i (�r) =

1

N

N�

j=1

|�Bi(rj , �r)|m � �r�(m),

where
�Bi(r, �r) = Bi(r + �r) � Bi(r).

If the scaling exponent, �, satisfies �(m) = Hm, then the turbulence is monofrac-
tal, i.e., the turbulence is globally scale invariant.

Importantly, the higher-order structure functions progres-
sively capture the more intermittent, larger fluctuations. As
we are studying the magnetic field increments, these large
fluctuations represent the spatial gradients which are re-
sponsible for dissipating energy from the magnetic fields.
We will focus on the scaling behavior of the structure
functions with scale ! such that

Smi ð!Þ / !"ðmÞ; (2)

where linear dependence of the scaling exponent "ðmÞ ¼
Hm implies monoscaling with a single exponent H. In
theories of turbulence, nonlinear "ðmÞ behavior is associ-
ated with the intensity of energy dissipation being distrib-
uted on a spatial multifractal [1].

The structure functions for the data interval studied here
are shown in Fig. 3. The inertial and dissipation ranges of
scaling are well defined with a sharp transition at the break
point at ’ 3 seconds in agreement with the PSD in Fig. 1;
the dissipation range extends over nearly 2 orders of mag-
nitude. Importantly, there is excellent agreement between
STAFF-SC and FGM in the dissipation range where they
overlap for almost a decade, indicated by the shaded region
on the plot. On the log- log plot of Fig. 3, the gradients as
shown give estimates of the scaling exponents "ðmÞ. We
plot "ðmÞ vs m for the dissipation range in the main panel
of Fig. 4, and for the inertial range in the inset. The errors
on the "ðmÞ shown in Fig. 4 are estimated [35] as the sum
of the regression error from Fig. 3, and from the variation
in "ðmÞ found by repeating the regression over a subin-
terval of the scaling range. Surprisingly, the dissipation
range is monoscaling, i.e., globally scale invariant; in

contrast to the inertial range which is multifractal, charac-
teristic of fully developed turbulence with "ð2Þ $ 2=3. The
single scaling parameter for the dissipation range for B z is
H ¼ 0:89 % 0:02 for STAFF-SC and H ¼ 0:84 % 0:05 for
FGM. To test the robustness of this result, we have repeated
this analysis for another ambient fast solar wind interval
(12:10–14:00 UT January 20, 2007) and obtained the same
global scale invariance. In both cases, we find that all three
field components are monoscaling. We can see that for the
particular solar wind interval shown in Fig. 4, the expo-
nents H for B x and B y are close to that of B z, suggesting
that the small-scale features of this turbulent interval of the
solar wind are also isotropic. For STAFF-SC data from the
second interval, however, we find H ¼ 0:9 % 0:02 for B x

and B y and H ¼ 0:8 % 0:05 for B z, suggesting an anisot-
ropy that may depend on local plasma parameters.
Monoscaling of the structure functions implies that the

probability density function (PDF) of the increments
P ð#B i; !Þ at a particular scale ! should collapse onto a
unique scaling function P s via the following rescaling
operation [35]

P sð#B i!
& HÞ ¼ !HP ð#B i; !Þ: (3)

This collapse of the data to a single scaling function is
tested in Fig. 5 for B z, where we have used the same values
of ! and the H value obtained above. We can see that there
is an excellent collapse onto a single curve. A fitted
Gaussian illustrates the highly non-Gaussian nature of
the tails of this PDF.

FIG. 3 (color online). Structure functions of orders: 1-h, 2-5 ,
3-w, 4-' , and 5-e. Open shapes correspond to FGM measure-
ments and filled shapes refer to STAFF-SC. The curves have
been shifted along the vertical axis to allow a comparison of the
gradients. The shaded area indicates the scales where both FGM
and STAFF structure function gradients overlap. Linear fits for
the inertial and dissipation ranges are also shown.

FIG. 4 (color online). Main plot: Scaling exponents " with
order m; a linear relationship on this plot indicates monoscaling
behavior. "ðmÞ obtained from both FGM and STAFF-SC are
shown for B z; these show close correspondence. STAFF-SC B x,
B y components are also shown and indicate isotropic scaling.

Inset: "ðmÞ vs m for the inertial range using FGM B z; this is
concave, consistent with the multifractal nature of the inertial
range.
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unique scaling function P s via the following rescaling
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This collapse of the data to a single scaling function is
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of ! and the H value obtained above. We can see that there
is an excellent collapse onto a single curve. A fitted
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behavior. "ðmÞ obtained from both FGM and STAFF-SC are
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Cluster solar wind 
data from Kiyani et 

al, PRL (2009) 
depicting a multi-

fractal inertial range 
and mono-fractal 

dissipation range. H 
~ 0.85 in the 

dissipation range.



Fractal scaling in the simulation
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Field-Particle Correlations



Vlasov-Poisson [Howes et al submitted]
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
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Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
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We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫
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qsφ

2
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∫

dv v2
∂fs0
∂v
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= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,
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Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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∂t
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2
msv

3 ∂δfs
∂x
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2
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From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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4. Code Description

Here we describe the Nonlinear Vlasov-Poisson Simulation Code VP. Our approach is
designed to highlight the perturbations to the distribution function fs associated with sec-
ular transfer of energy from the electrostatic field to the plasma particles via collisionless
wave-particle interactions. Since the distribution function fs(x, v, t) = fs0(v)+δfs(x, v, t)
only appears linearly in the Vlasov equation, we may separate the evolution of different
components of the perturbed distribution function,

δfs = δfsB + δfsWl + δfsWn, (4.1)

denoted the (linear) ballistic term δfsB, the linear wave term δfsWl, and the nonlinear
wave term δfsWn. The time evolution of these different terms is given by

∂δfsB
∂t

= −v
∂δfs
∂x

(4.2)

∂δfsWl

∂t
=

qs
ms

∂φ

∂x

∂fs0
∂v

(4.3)

∂δfsWn

∂t
=

qs
ms

∂φ

∂x

∂δfs
∂v

. (4.4)

As well shall see, the perturbed distribution function δfs at a single point in space is
dominated by the ballistic and linear wave terms, but it is the much smaller nonlinear
wave term that represents the secular transfer of energy from fields to particles via colli-
sionless wave-particle interactions. The motivation for this paper is to identify a strategy
for isolating the much smaller perturbations associated with collisionless damping of
the electrostatic field, so separating these different contributions helps to illuminate the
different contributions to the collisionless energy transfer via wave-particle interactions.
The details of the numerical implementation used to evolve the separated components

of the Vlasov equation, given by (4.2)–(4.4), and the calculation of the electrostatic
potential, given by (3.2), are presented in Appendix A.

4.1. Code Validation

As a validation of VP, we have performed validation tests of the linear frequency and
damping rates of Langmuir waves with a range of values of kλde for plasma parameters
Ti/Te = 1 and mi/me = 100, as presented in figure 1. Both nonlinear simulations at
sufficiently small initial amplitude δn/n0 and linear simulations (where the nonlinear
wave-particle interaction term is not included in the evolution) yield the consistent re-
sults, given by the open squares, showing good agreement with the results of a numerical
solution of the linear dispersion relation (thick lines). Also plotted (thin lines) for com-
parison are analytical estimates of the frequency ω and damping rate −γ for Langmuir
waves using the weak damping approximation,

ω2 = ω2
pe

(

1 + 3k2λ2
de

)

, (4.5)

γ = −
√

π

8

ωpe

|kλde|3
exp−

(

1

2k2λ2
de

+
3

2

)

. (4.6)

[ADDITIONAL VALIDATION TEST: NONLINEAR LANDAUDAMPING AND PAR-
TICLE TRAPPING/BOUNCE FREQUENCY?]
The bounce frequency for electrons in nonlinear Landau damping is given by

ω2
b =

qeφ0k2

me
, (4.7)

Field-Particle Correlations 15

Figure 3. (a) Total electron distribution function fe (magenta), equilibrium electron distri-
bution function fe0 (black), and total perturbed electron distribution function δfe (cyan). (b)
The separated components of the perturbed electron distribution function: (i) δfeB (green), (ii)
δfeWl (blue), and (iii) δfeWn (red). Dashed vertical black lines denote the resonant velocities
v = ±ω/k.

Langmuir wave pattern with kλde = 0.5 is ωpeT = 4.39, so 99% of the electrostatic
energy in the wave pattern is secularly transferred to the electrons in about 3 periods.
Next we explore the different components of the perturbed electron distribution func-

tion for this nonlinear simulation at time ωpet = 19.64 and position x = 0. In panel (a)
of figure 3, we plot the total electron distribution function fe (magenta), the equilibrium
electron distribution function fe0 (black), and the total perturbed electron distribution
function δfe = δfeB + δfeWl + δfeWn (cyan). We can gain deeper insight into the nature
of the fluctuations in the electron distribution function by separating out the compo-
nents arising from the different terms in (3.14), shown in panel (b): (i) the ballistic term
yields δfeB (green), (ii) the linear wave-particle interaction term yields δfeWl (blue),
and (iii) the nonlinear wave-particle interaction term yields δfeWn (red). As shown in
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Figure 4. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red), the quasilinear perturbed distribution function δfeQL(v, t) (thick red).
The quasilinear flattening of the distribution function at the resonant velocities v = ±ω/k
(dashed black) is apparent in the total quasilinear distribution function feQL(v, t) (thick ma-
genta), but this signature is obscured in the total electron distribution function evaluated at
position x = 0, fe(0, v, t) (thin magenta).

section 3.2, it is only the nonlinear wave-particle interaction term that leads to a secular
transfer of energy from the electrostatic field to the electrons, and this component of the
perturbed electron distribution function is generally much smaller than the ballistic and
linear wave-particle interaction components. The primary aim of this paper is to devise a
procedure to isolate this small component of the fluctuations in the distribution function
using only single-point measurements of the particle velocity distribution functions and
the electrostatic field.
If full spatial information about the fluctuations is available, then a spatial average
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Figure 11. For Case I, plots of (a) the C1(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t), and (b) the C2(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The dot–
dashed vertical green lines denote the resonant velocities v = ±ω/k.

plitude oscillating energy transfer, making it difficult to determine resonant nature of the
collisionless damping.
A key part of this field-particle correlation analysis is the selection of an appropriate

correlation time interval τ to isolate successfully the small-amplitude secular energy
transfer in the presence of a much larger amplitude oscillating energy transfer. For this
case, the standing wave period is ωpeT = 4.39. In the upper panels of figure 12, we plot
the correlation C1(v0, t, τ) from (3.20) over a range of correlation times 0 ! ωpeτ ! 16 at
two velocity values, (a) off-resonance at v0 = 0.08vte and (b) on resonance at v0 = 2.85vte.
Note that the τ = 0 curve (dark blue) corresponds to a vertical slice along figure 11(a)
at the appropriate velocity v0. The impact of increasing the correlation time interval τ is
clear. As the correlation time increases, the large amplitude oscillations of the τ = 0 case
(blue), which are dominated by the oscillating energy transfer, are averaged out, isolating
the smaller amplitude secular energy transfer for correlation times longer than the wave
period, τ > T (red). Note that the amplitude of the energy transfer rate—estimated by
the correlation C1(v0, t, τ)—at v0 = 0.08vte is two orders of magnitude smaller than at
v0 = 2.85vte, so only the latter would be observationally accessible.
As shown in section 6, the correlation C1(v0, t, τ) in (3.20) is a direct calculation of the

rate of energy transfer between the electrostatic field and the plasma particles. Therefore,
to determine the accumulated energy transfer to the electrons, we can simply integrate
this correlation over time. Thus, we obtain the total change in the electron phase-space
energy density at x = x0, ∆we(x0, v, t), given by

∆we(x0, v, t) =

∫ t

0
C1(v, t

′, τ)dt′. (6.2)

In the lower panels of figure 12, we plot the time-integrated correlation, giving the change
in the electron phase-space energy density ∆we(x0, v, t) as a function of time ωpet at the
same two velocity values, (c) off-resonance at v0 = 0.08vte and (d) on resonance at
v0 = 2.85vte. Note again that the change in phase-space energy density is several orders
of magnitude larger for the resonant case at v0 = 2.85vte. The take away lesson here is
that, by selecting a correlation interval τ " 1.5T , the large-amplitude oscillating energy
transfer rate can be averaged out, isolating the signal of the secular energy transfer rate
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 12. The correlation C1(v0, t, τ ) from (3.20) over a range of correlation times
0 ! ωpeτ ! 16 at two velocity values, (a) off-resonance at v0 = 0.08vte and (b) on resonance
at v0 = 2.85vte. Also, the change in the electron phase-space energy density ∆we(x0, v, t) as a
function of time ωpet at the same two velocity values, (c) off-resonance at v0 = 0.08vte and (d)
on resonance at v0 = 2.85vte. Units of the energy transfer rate (a,b) and change in phase-space
energy density (c,d) are arbitrary, but consistent from one panel to another.

to the electrons associated with the collisionless damping of the electrostatic field. Note
that our procedure is essentially just a sliding time-average of the rate of change of the
phase-space energy density.
Now that we have determined an appropriate value for the correlation time interval,

we apply the field-particle correlation C1(v, t, τ), given by (3.20), to the observable data
in figure 10 using a correlation time ωpeτ = 6.28. The resulting value of the correlation
C1(v, t, τ) as a function of velocity v/vte and time ωpet for Case I is shown in figure 13(a).
The selection of an appropriately long correlation interval has eliminated the large oscil-
lations seen in figure 11 at v/vte < 2, showing that the remaining rate of secular energy
transfer has a significant amplitude that is much more localized around the resonant ve-
locity of v/vte = 2.86. Further, we can time-integrate this correlation to obtain the secular
change in the electron phase-space energy density, ∆we(x0, v, t), shown in figure 13(b).
Panel (b) is the primary result of this field-particle correlation technique, showing the
net change in electron phase-space energy density is tightly correlated with the resonant
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Figure 11. For Case I, plots of (a) the C1(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t), and (b) the C2(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The dot–
dashed vertical green lines denote the resonant velocities v = ±ω/k.

plitude oscillating energy transfer, making it difficult to determine resonant nature of the
collisionless damping.
A key part of this field-particle correlation analysis is the selection of an appropriate

correlation time interval τ to isolate successfully the small-amplitude secular energy
transfer in the presence of a much larger amplitude oscillating energy transfer. For this
case, the standing wave period is ωpeT = 4.39. In the upper panels of figure 12, we plot
the correlation C1(v0, t, τ) from (3.20) over a range of correlation times 0 ! ωpeτ ! 16 at
two velocity values, (a) off-resonance at v0 = 0.08vte and (b) on resonance at v0 = 2.85vte.
Note that the τ = 0 curve (dark blue) corresponds to a vertical slice along figure 11(a)
at the appropriate velocity v0. The impact of increasing the correlation time interval τ is
clear. As the correlation time increases, the large amplitude oscillations of the τ = 0 case
(blue), which are dominated by the oscillating energy transfer, are averaged out, isolating
the smaller amplitude secular energy transfer for correlation times longer than the wave
period, τ > T (red). Note that the amplitude of the energy transfer rate—estimated by
the correlation C1(v0, t, τ)—at v0 = 0.08vte is two orders of magnitude smaller than at
v0 = 2.85vte, so only the latter would be observationally accessible.
As shown in section 6, the correlation C1(v0, t, τ) in (3.20) is a direct calculation of the

rate of energy transfer between the electrostatic field and the plasma particles. Therefore,
to determine the accumulated energy transfer to the electrons, we can simply integrate
this correlation over time. Thus, we obtain the total change in the electron phase-space
energy density at x = x0, ∆we(x0, v, t), given by

∆we(x0, v, t) =

∫ t

0
C1(v, t

′, τ)dt′. (6.2)

In the lower panels of figure 12, we plot the time-integrated correlation, giving the change
in the electron phase-space energy density ∆we(x0, v, t) as a function of time ωpet at the
same two velocity values, (c) off-resonance at v0 = 0.08vte and (d) on resonance at
v0 = 2.85vte. Note again that the change in phase-space energy density is several orders
of magnitude larger for the resonant case at v0 = 2.85vte. The take away lesson here is
that, by selecting a correlation interval τ " 1.5T , the large-amplitude oscillating energy
transfer rate can be averaged out, isolating the signal of the secular energy transfer rate
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Figure 11. For Case I, plots of (a) the C1(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t), and (b) the C2(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The dot–
dashed vertical green lines denote the resonant velocities v = ±ω/k.

plitude oscillating energy transfer, making it difficult to determine resonant nature of the
collisionless damping.
A key part of this field-particle correlation analysis is the selection of an appropriate

correlation time interval τ to isolate successfully the small-amplitude secular energy
transfer in the presence of a much larger amplitude oscillating energy transfer. For this
case, the standing wave period is ωpeT = 4.39. In the upper panels of figure 12, we plot
the correlation C1(v0, t, τ) from (3.20) over a range of correlation times 0 ! ωpeτ ! 16 at
two velocity values, (a) off-resonance at v0 = 0.08vte and (b) on resonance at v0 = 2.85vte.
Note that the τ = 0 curve (dark blue) corresponds to a vertical slice along figure 11(a)
at the appropriate velocity v0. The impact of increasing the correlation time interval τ is
clear. As the correlation time increases, the large amplitude oscillations of the τ = 0 case
(blue), which are dominated by the oscillating energy transfer, are averaged out, isolating
the smaller amplitude secular energy transfer for correlation times longer than the wave
period, τ > T (red). Note that the amplitude of the energy transfer rate—estimated by
the correlation C1(v0, t, τ)—at v0 = 0.08vte is two orders of magnitude smaller than at
v0 = 2.85vte, so only the latter would be observationally accessible.
As shown in section 6, the correlation C1(v0, t, τ) in (3.20) is a direct calculation of the

rate of energy transfer between the electrostatic field and the plasma particles. Therefore,
to determine the accumulated energy transfer to the electrons, we can simply integrate
this correlation over time. Thus, we obtain the total change in the electron phase-space
energy density at x = x0, ∆we(x0, v, t), given by

∆we(x0, v, t) =

∫ t

0
C1(v, t

′, τ)dt′. (6.2)

In the lower panels of figure 12, we plot the time-integrated correlation, giving the change
in the electron phase-space energy density ∆we(x0, v, t) as a function of time ωpet at the
same two velocity values, (c) off-resonance at v0 = 0.08vte and (d) on resonance at
v0 = 2.85vte. Note again that the change in phase-space energy density is several orders
of magnitude larger for the resonant case at v0 = 2.85vte. The take away lesson here is
that, by selecting a correlation interval τ " 1.5T , the large-amplitude oscillating energy
transfer rate can be averaged out, isolating the signal of the secular energy transfer rate



Correlation finite time

24 G. G. Howes, K. G. Klein, and T. C. Li

-4 -2 0 2 4
0

5

10

15

20

25

v/vte

tω
pe

x10-3

-8

-4

 0

 4

 8

-4 -2 0 2 4
0

5

10

15

20

25

-4 -2 0 2 4
0

5

10

15

20

25

v/vte

tω
pe

x10-3

-8

-4

 0

 4

 8

-4 -2 0 2 4
0

5

10

15

20

25
(a) (b)

Figure 11. For Case I, plots of (a) the C1(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t), and (b) the C2(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The dot–
dashed vertical green lines denote the resonant velocities v = ±ω/k.

plitude oscillating energy transfer, making it difficult to determine resonant nature of the
collisionless damping.
A key part of this field-particle correlation analysis is the selection of an appropriate

correlation time interval τ to isolate successfully the small-amplitude secular energy
transfer in the presence of a much larger amplitude oscillating energy transfer. For this
case, the standing wave period is ωpeT = 4.39. In the upper panels of figure 12, we plot
the correlation C1(v0, t, τ) from (3.20) over a range of correlation times 0 ! ωpeτ ! 16 at
two velocity values, (a) off-resonance at v0 = 0.08vte and (b) on resonance at v0 = 2.85vte.
Note that the τ = 0 curve (dark blue) corresponds to a vertical slice along figure 11(a)
at the appropriate velocity v0. The impact of increasing the correlation time interval τ is
clear. As the correlation time increases, the large amplitude oscillations of the τ = 0 case
(blue), which are dominated by the oscillating energy transfer, are averaged out, isolating
the smaller amplitude secular energy transfer for correlation times longer than the wave
period, τ > T (red). Note that the amplitude of the energy transfer rate—estimated by
the correlation C1(v0, t, τ)—at v0 = 0.08vte is two orders of magnitude smaller than at
v0 = 2.85vte, so only the latter would be observationally accessible.
As shown in section 6, the correlation C1(v0, t, τ) in (3.20) is a direct calculation of the

rate of energy transfer between the electrostatic field and the plasma particles. Therefore,
to determine the accumulated energy transfer to the electrons, we can simply integrate
this correlation over time. Thus, we obtain the total change in the electron phase-space
energy density at x = x0, ∆we(x0, v, t), given by

∆we(x0, v, t) =

∫ t

0
C1(v, t

′, τ)dt′. (6.2)

In the lower panels of figure 12, we plot the time-integrated correlation, giving the change
in the electron phase-space energy density ∆we(x0, v, t) as a function of time ωpet at the
same two velocity values, (c) off-resonance at v0 = 0.08vte and (d) on resonance at
v0 = 2.85vte. Note again that the change in phase-space energy density is several orders
of magnitude larger for the resonant case at v0 = 2.85vte. The take away lesson here is
that, by selecting a correlation interval τ " 1.5T , the large-amplitude oscillating energy
transfer rate can be averaged out, isolating the signal of the secular energy transfer rate
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Figure 13. (a) The field-particle correlation C1(v, t, τ ) = Cτ (qsv
2/2∂δfs/∂v,E) at x = 0 using

a correlation time ωpeτ = 6.28. (b) The time-integrated correlation
∫ t

0
C1(v, t

′, τ )dt′, showing a
clear resonant signature of the secular energy transfer about the resonant velocities v = ±ω/k
(dashed green).
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Figure 14. For Case I, (a) the alternative field-particle correlation
C2(v, t, τ ) = Cτ (qsvδfs/∂v, E) at x = 0 using a correlation time ωpeτ = 6.28. (b) The
time-integrated correlation

∫ t

0
C2(v, t

′, τ )dt′. Vertical dashed green lines denote the resonant
velocities v = ±ω/k.

velocity. The loss of energy at v < ω/k and gain of energy at v > ω/k corresponds
physically to a flattening of the distribution function at the resonant velocity, consistent
with the quasilinearly averaged electron distribution function shown in figure 4.
As mentioned in section 6, it may be impractical to compute the derivative of the

perturbed distribution function, ∂δfs(x, v, t)/∂v, using spacecraft measurements that
are affected by noise and typically have limited velocity space resolution. Therefore,
the alternative correlation C2(v, t, τ), given by (3.21), may be more suitable for the
analysis of single-point spacecraft measurements. Therefore, we repeat the field-particle
correlation analysis, starting with the observable single-point measurements given in
figure 10, and using the alternate form of the correlation C2(v, t, τ), given by (3.21),
with the same correlation time ωpeτ = 6.28. In figure 14, we plot (a) the correlation
C2(v, t, τ) as a function of velocity v/vte and time ωpet and (b) the time-integrated
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We perform three initial
simulations, with the
following parameters:

k⊥ρp ∈ [0.3, 3.3]

βp = 0.3, 1.0, 5.0

Te = Ti

νs ≈ 0.1γs(k⊥,0)

(Klein et al. 2016, in prep
for submission to JPP)

At a discrete number of points in the simulation domain xi, we
output at a fixed cadence gs(xi,v, t), E∥(xi, t), & δB∥(xi, t).



Landau and transit time dampingCoherent Damping Mechanisms
Coherent damping occurs for particles satisfying the resonance

ω − k∥v∥ = 0.
The n = 0 resonance corresponds to two physical mechanisms,
Landau Damping, and Transit Time Damping
(Landau 1946, Barnes 1966)
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Correlation tests of Landau damping
The Strength of Landau Damping Varies with β
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C1 peaks near the appropriate resonant velocities.

Landau Damping weakens for larger βp.

We next consider correlations for Transit Time Damping.



Transit time damping
Considering Transit Time Damping
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Comparison and ID
Distinguishing between LD and TTD

As the velocity derivative ∂v∥gs may be difficult to construct
accurately for spacecraft data, we consider the related
correlation:
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Eulerian Vlasov-Maxwell



The Gkeyll (and Hyde) Framework
“It is one thing to mortify curiosity, another to conquer it.”

• The Gkeyll framework is flexible suite of solvers for 
plasma physics being developed at the Princeton 
Plasma Physics Lab and UMD

• Solvers include a finite volume method for equations 
written in conservative form and a discontinuous 
Galerkin finite element method for systems of equations 
which can be written in terms of a Poisson bracket

• Multiple publications already:

• L. Wang, A. H. Hakim, A. Bhattacharjee, and K. Germaschewski. 
Comparison of multi-fluid moment models with particle-in-cell 
simulations of collisionless magnetic reconnection. Phys. Plasmas, 22 
(1): 012108, (2015).  

• E. L. Shi, A. H. Hakim, and G. W. Hammett. A gyrokinetic one-
dimensional scrape-off layer model of an edge-localized mode heat 
pulse. Phys. Plasmas, 22 (2): 022504, (2015).  

• J. Ng, Y. M. Huang, A. H. Hakim, A. Bhattacharjee, A. Stanier, W. 
Daughton, L. Wang, and K. Germaschewski. The island coalescence 
problem: Scaling of reconnection in extended fluid models including 
higher-order moments. Phys. Plasmas, 22, 112104, (2015).



The Vlasov-Maxwell system
The starting point of plasma kinetic theory: the
Vlasov-Maxwell system

@f

@t
+rz · (↵f) = C[f ],

@B

@t
+r⇥E = 0

✏0µ0
@E

@t
�r⇥B = �µ0J

rz = (rx,rv) and ↵ = (v, qs
ms

(E+ v ⇥B))

Standard approach to solving the Vlasov-Maxwell system numerically is the
particle-in-cell (PIC) algorithm, which approximates the plasma as a
collection of ”macroparticles”

Each macroparticle’s position and velocity are solved for via

ẋ = v

v̇ =
qs
ms

(E+ v ⇥B))
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Direct discretizationDirect discretization of the Vlasov-Maxwell system

What if we solved for the distribution function, as well as the fields, on a
grid? A completely Eulerian (or continuum) algorithm?
Advantages

Resulting distribution function would be noise-free, allowing for
diagnosis of many dissipation mechanisms much more easily
The fields would also be noise-free
Numerically, the algorithm requires no dynamic load-balancing at
extreme scale computing, don’t have to worry about tracking particles

Disadvantages
All of velocity space must be solved at each configuration space point
All of the same time step constraints as explicit PIC (speed of light and
plasma frequency)
One additional constraint when compared to the Boris push. Requires
careful treatment of magnetic field because Larmor radii are not
automatically closed
Production simulation distribution functions are enormous data
structures. Either must sacrifice write frequency or only write out
distribution function in small subdomain for analysis

J. Juno (UMD) Vlasov-Maxwell in Gkeyll 13th July 2016 3 / 6



Discontinuous Galerkin method
Combining the power of both a finite element, and a finite
volume, method

In the discontinuous Galerkin (DG) finite element method framework, one
selects a discontinuous approximation space (usually piecewise
polynomials). Unlike FV schemes which only evolve cell averages, in DG
we also evolve higher moments.

Figure: The projection of x4 + sin(5x) onto piecewise constant (left), linear
(middle) and quadratic (right) spaces.
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Why DG?
Why DG?

Why use this particular numerical method?

Advantages
Flexible accuracy. Can pick an appropriately high order polynomial
representation to get most “bang for your buck”
Dominant computation is matrix-vector multiplication. Easily
vectorized, and matrices can be cached if polynomial order is picked
appropriately for dimension of problem
High arithmetic intensity. Number of computations per byte of data
communicated is large and without load balancing
Highly parallelizable. Only requires one layer of ghost cells

J. Juno (UMD) Vlasov-Maxwell in Gkeyll 13th July 2016 5 / 6



Where is Gkeyll now?

• Currently in the benchmarking, debugging, and optimization phase

• Addition of a collision operator, Lenard Bernstein

• Other improvements: sparse grids, reduced basis sets, sub-cycling, semi-
implicit, etc



Summary

• Dissipation is consistent with (inhomogeneous) Landau damping

• Intermittent structures form naturally and are similar to those observed in the 
solar wind

• Field-particle correlations support the Landau damping picture and are 
applicable to 1D in situ spacecraft data

• Gyrokinetics is a powerful tool for studying solar wind turbulence, but we are 
developing a full Eulerian Vlasov-Maxwell simulation code to move beyond 
gyrokinetics.



Supplemental slides



Consequences of the GK ordering

• Cyclotron, plasma wave, and the fast magnetosonic branch are ordered
out of system

• Subsonic drifts: vd � �vth

• In the absence of collisions, magnetic moment conserved

• Rigorously quasi-neutral, i.e., �ne = �ne

• Must choose an � to connect to reality

• Most codes do not evolve the transport time-scale, i.e., the background
does not evolve



Cascade model [Howes et al (2008)]
Ideally, one would like a turbulence model wherein the spectral exponents, spectral 

anisotropy, and ion and electron heating can be simply predicted

easily comparable to the large- or small-scale contributions.
To yield more easily interpretable results for the contribu-
tions to xnl k?ð Þ, we split the integral in Eq. (26) into three
ranges: the large-scale shearing contribution (s) over
k?0; k?=2½ Þ, the local-scale contribution (l) over k?=2; 2k?½ $,
and the small-scale diffusive contribution (d) over
2k?; k?maxð $.

Although the weakened cascade model follows only the
cascade of perpendicular magnetic energy, the energy spec-
tra of other fields can be constructed from the steady-state
solution. Assuming the waves have the character of the lin-
ear Alfvénic eigenmodes, we use the solution of the linear
kinetic eigenfunction as a function of k? to construct, for
example, the amplitude of the perpendicular electric field
fluctuation from the amplitude of the perpendicular magnetic
field fluctuation given by the cascade model solution.
Because the phase and amplitude relations between the fields
are fixed by the linear kinetic physics, no additional free pa-
rameters are introduced: if the linear character of the fluctua-
tions applies, the solution of the perpendicular magnetic
energy spectrum determines the energy spectra of the other
fields. This linearity assumption appears to be well satisfied
in comparisons to nonlinear kinetic simulation results.8 This
approach enables us to fit three different curves by adjusting
only the two Kolmogorov constants, C1 and C2, in the weak-
ened cascade model, providing increased confidence in fits
to numerical spectra.

1. Moderately damped bi5 1 case

The first comparison of the local and nonlocal weakened
cascade models tests their ability to fit the results of the
bi ¼ 1 dissipation range simulation, the first kinetic simula-
tion resolving both the ion and electron Larmor radius scales
in a single simulation, the full details of which are reported
in a companion paper.9 The plasma parameters for this gyro-
kinetic simulation using AstroGK57 are bi ¼ 1 and Ti/Te ¼ 1,
and all dissipation is provided by physically resolved colli-
sionless damping via the Landau resonance onto the ions and
electrons. In Figure 3 are plotted the one-dimensional energy
spectra (thick lines) for the perpendicular magnetic field fluc-
tuations EB? (black solid), the parallel magnetic field fluctua-
tions EBk (magenta dot-dashed), and the perpendicular
electric field fluctuations EE? (green dashed).

For comparison, the predicted energy spectra from the
nonlocal weakened cascade model (thin solid) and the local
cascade model (thin dashed) are overplotted on Figure 3.
Using the linear gyrokinetic eigenfunctions for the Alfvén
mode enables the determination of the parallel magnetic and
perpendicular electric field spectra from the perpendicular
magnetic spectrum output by the cascade model. For the
nonlocal model, the Kolmogorov constants required to yield
a good fit to the numerical simulation results are
C1 ¼ 1.656 0.20 and C2 ¼ 1.0, while for the local model
they are C1 ¼ 1.86 0.35, C2 ¼ 1.0, and C3 ¼ 2.25. Note that
a higher value of C1 leads to stronger weighting of the linear
damping relative to the nonlinear energy transfer. The Kol-
mogorov constant C1 is the primary adjustable parameter in
the weakened cascade model, dominantly controlling the

shape of the energy spectrum. The second Kolmogorov con-
stant C2 fine tunes the condition of critical balance, and has
not been adjusted; tests of the distribution of energy in wave-
vector space are necessary to constrain this Kolmogorov
constant and are beyond the scope of the present work.

Comparison of the energy spectra indicates that both the
nonlocal and local cascade models are able to reproduce the
bi ¼ 1 simulation spectra with similar values for C1. Differ-
ences between the models become clear as we look more
closely at various contributions to the energy cascade rate, as
presented in Figure 4 . In panel (a), the energy cascade rate !
is plotted vs. k?qi for local (dotted) and nonlocal (dashed)
models. This comparison shows little difference between
models, so we must look more closely at the local and nonlo-
cal contributions to the energy cascade rate.

In panel (b) of Figure 4 , for the nonlocal model, the frac-
tions of the energy cascade rate from the large-scale shearing
motions !s/! (blue, middle), the local-scale motions !l/!
(green, top), and the small-scale diffusive motions !d/! (red,
bottom) are plotted. To highlight the effects of kinetic dissi-
pation on these contributions to the energy cascade rate, dot-
ted lines give the results when kinetic dissipation is
artificially set to zero. From this plot, it is clear that, as the
cascade proceeds to higher wavenumber, the diffusive con-
tribution (red, bottom) to the cascade diminishes first at
k?qi & 1 due to dissipation (compared to the undamped case
given by the red dotted line), leading to a fractional increase
in the local and shear contributions. Next, the fraction of !
due to local motions (green, top) begins to diminish at
around k?qi & 20, leading eventually to a dominance of the
energy cascade rate by the shearing motions of the large
scales (blue, middle). It is this dominance of the energy cas-
cade rate by the large scale motions as kinetic damping dissi-
pates the turbulent motions that is the primary difference
between the local and nonlocal models. Note that the unusual

FIG. 3. (Color online) Energy spectra from the bi ¼ 1 dissipation range simu-
lation9 resolving both the ion and electron Larmor radius scales, depicted by
vertical dotted lines. For a bi ¼ 1 and Ti/Te ¼ 1 plasma, thick lines present nu-
merical energy spectra for the perpendicular magnetic (black solid), electric
(green dashed), and parallel magnetic (magenta dotted-dashed) fields. Pre-
dicted energy spectra from the nonlocal model (thin solid) for C1 ¼ 1.65 and
the local model (thin dashed) for C1 ¼ 1.8 are overplotted for comparison.
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Weakened cascade model [Howes et al (2011)]
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peak at the left for !l/! is due to the window that defines the
local contributions.61

The difference between the local and nonlocal models
can be seen at high wavenumbers in the nonlinear frequency
xnl, plotted in panel (c). For the local model (dotted), the
nonlinear frequency peaks at around k?qi ! 50, and then
begins to diminish due to the dissipation of the local motions
responsible for the nonlinear energy transfer. The nonlocal
model (dashed), on the other hand, merely flattens out, as
large scale motions continue to support the nonlinear energy
transfer at smaller scales.

In summary, both the local and nonlocal models yield
similar results in modeling the turbulent energy spectra in
the moderately damped bi¼ 1 case, as shown in Figure 3 .
The differences become apparent only as the kinetic dissipa-
tion becomes sufficiently strong to diminish the local contri-
bution to the nonlinear energy transfer, enabling nonlocal,
large-scale shearing motions to dominate the nonlinear fre-
quency, as seen at the high k?qi end of panel (b) in Figure 4.
It is this difference in the physical mechanisms that will
prove crucial in cases where the kinetic damping is stronger,
requiring the additional physics of the effect of nonlocal
motions on the energy transfer to model correctly the steady-
state energy spectra.

2. Strongly damped bi5 0.01 case

In a low beta plasma, the kinetic damping of fluctuations
in the KAW regime is substantially stronger. In this more
strongly damped case, the difference between the local and
nonlocal models is dramatic: the local model is simply
unable to fit the shape of the spectrum. In this section, we

compare the spectra predicted by the local and nonlocal cas-
cade models to the steady state of the bi¼ 0.01 nonlinear
AstroGK simulation. In Figure 5, panel (a) shows a fit of the
nonlocal model to the AstroGK simulation spectra (same
legend as Figure 3 ), using C1¼ 2.85 (thin solid) and with
C1¼ 2.856 0.15 (thin dashed). In panel (b) is presented the
best fit using the local cascade model, for C1¼ 2.6 (thin
solid) and C1¼ 2.66 0.4 (thin dashed). All cascade models
in this figure use C2¼ 1 and, as usual, the local model
employs C3 ¼ 2.25 so that the Kolmogorov constants of both
models are comparable. It is immediately apparent that the
local model is incapable of fitting the correct shape of the
spectrum, generally showing power law slopes that are too
flat at the low wavenumbers and a cutoff that is too sharp at
high wavenumbers; the neglect of the effect of nonlocal
motions on the energy cascade rate at high wavenumbers,
where the kinetic dissipation becomes strong, leads to this
failure of the local model.

An inspection of the nonlinear frequency xnl for both
models, plotted in Figure 6, further illustrates this point. The
nonlinear frequency for the local model (dotted) peaks at
about k?qi ’ 6, and then drops off rapidly. This occurs
because strong kinetic damping dissipates the turbulent fluc-
tuations at the local scale, consequently slowing the nonlin-
ear energy transfer due to those local motions and enabling
the linear kinetic damping to dominate over energy transfer
at that scale, resulting in a sharp cutoff of the turbulent
energy spectra. The nonlocal model (dashed), on the other
hand, shows that the nonlinear frequency flattens to a con-
stant value at high wavenumbers but does not decrease. In
this case, it is the nonlocal, large-scale shearing motions62

FIG. 4. (Color online) From the local and nonlocal weakened cascade mod-
els for the bi¼ 1 and Ti/Te¼ 1, plasma depicted in Figure 3 , (a) the energy
cascade rate !/!0 vs. k?qi for local (dotted) and nonlocal (dashed) models,
(b) the fractional contribution to ! due to the large-scale shearing motions !s/
! (blue, middle), the local-scale motions !l/! (green, top), and the small-scale
diffusive motions !d/! (red, bottom) with linear kinetic damping (solid) and
with no damping (dotted), and (c) the nonlinear frequency xnl from the local
model (dotted) and the nonlocal model (dashed).

FIG. 5. (Color online) Energy spectra from the nonlinear AstroGK gyroki-
netic simulation of turbulence in a with bi¼ 0.01 and Ti/Te¼ 1. Thick lines
represent numerical energy spectra for the perpendicular magnetic (black
solid), electric (green dashed), and parallel magnetic (magenta dotted-
dashed) fields. (a) The nonlocal model with C1¼ 2.856 0.15, where thin
solid lines are the spectra for the central value, and the dashed lines demon-
strate the6 0.15 variation. (b) The local model with C1¼ 2.66 0.4.
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Energy spectra from fully nonlinear AstroGK 
simulation with  βi = 0.01 and Ti /Te = 1 
(thick) compared to predictions from the 
weakened cascade model (upper panel, 
thin) and the local cascade model (lower 

panel, thin). From Howes et al (2011).



Antenna energy injection

3

is defined as
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Here, j is the species index, the sum over k indicates a
summation over all wavenumber pairs (kx, ky), and the
angle brackets denote a spatial average along the guide
field. fjk is the gyrocenter distribution for species j,
and hjk = fjk +

�
qj�1k + µB1kk

�
F0j/T0j is its nona-

diabatic part. The overbar represent an average over the
gyrophase, and F0j is a Maxwellian background distri-
bution with background density n0j , temperature T0j ,
and magnetic field B0. The magnetic potential A1tot,k is
understood to contain also the contribution due to the
Langevin antenna, which is necessary for a complete ac-
count of the energy contained in the system. The time
derivative of the free energy can be expressed as
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where the time derivative @tgjk = @t(fjk +
qjvTjvkA1kkF0j/T0j) is the quantity explicitly evolved
the gyrokinetic Vlasov equation as implemented in
GENE, vTj =

p
2T0j/mj , and

C = k2?

�0

@k2? +
X

j

�q2j
mj

n0j⇡B0

ˆ
v2kJ

2
0 (�j)F0jdvkdµ

1

A .

By replacing @tgjk in the Eq. 1 with any single term
contributing to its evolution, we can in turn assess the
impact of that term on the evolution of the free energy.
Note that compared with the conventional expressions
(e.g. Ref. [19]), Eq. 1 contains two additions to the free
energy balance: first, a purely magnetic term propor-
tional to the time derivative of the antenna potential, and
second, an additional term proportional to the gyroaver-
aged antenna potential Aant,k, which multiplies @tgjk and
thus modifies the individual free energy contributions of
all terms that enter contribute to the evolution of @tgjk.
Hence, also the nonlinear transfer function (i.e. the free
energy balance contribution of the nonlinear term) has
to be modified accordingly, such that it reads

Tkpq =

ˆ
⇡B0dvkdµ

T0j

2F0j
[qxpy � qypx]

⇥
⇥
�1jqhjp � �1jphjq

⇤ ⇥
hjk + qjvTjCAant,kF0j/T0j

⇤
.(2)

Compared to the definition used in Refs. [20, 21], there
is an additional term involving the antenna potential,

Figure 2. Spectrum of the energy input of the antenna. The
vertical dashed line marks the shell containing k?⇢i = 1.

and the electrostatic approximation has been dropped
by using the full (normalized) electromagnetic potential
�1j = �1j�vkvTjA1tot,j+µB1k/T0jqj . Note that the new
antenna potential term does not satisfy the same symme-
try properties as the rest of the transfer function, which
is consistent with the fact that the antenna, through the
nonlinearity, acts as an energy source. This source can
be quantified by measuring the symmetric part of the
above transfer function. Conversely, taking the asym-
metric part of the transfer function, it is possible to ex-
tract the conservative part of the transfer and to judge
the impact of the antenna on the rest of the spectrum
through conservative transfer.

In order to study these and other properties, it is nec-
essary to reduce the data by subdividing the perpendicu-
lar wavenumber plane into shells, which we define as the
region 0  k?  k0 for the 0th shell and k02(n�1)/3 
k?  k02n/3 for the shells numbered 1  n  N , where
we set k0 = 0.275 and N = 24. This setup is chosen to
cover the entire k?range present in the simulations, with
good resolution also for k?⇢i < 1, while at the same time
guaranteeing that the lowest shell 0 < k? < k0 contains
all externally driven modes exclusively.

In the following, all figures of nonlinear transfer are
shown for the electron species only; properties of the
same plots for the ions will be mentioned in the text
if necessary. With the shell setup described above, in
Fig. 2, the nonconservative effect of the antenna on all
shells is plotted. Evidently, the injected energy dimin-
ishes very quickly with increasing wavenumber, having
decayed by more than two orders of magnitude when the
k?⇢i = 1 range is crossed. The kinetic range can thus be
considered to be essentially free of source effects.

Next, let us examine the nonlinear shell-to-shell trans-
fer, which is obtained by summing over all q wavenumbers
in Eq. 2. The resulting matrix (including the symmet-
ric terms due to the antenna) is displayed in Fig. 3. By

• Using the energy transfer diagnostic, the non-conservative contribution of the antenna 
source.

• By k0ρi = 1, the injected energy has fallen by two orders of magnitude.

• The kinetic range is effectively free of source effects.



Locality of energy transfer



Local versus non-local energy transfer

+

Local transfer
Large scale shearing Small scale diffusion

In neutral fluid turbulence, these can be transformed 
away via random Galilean transformations. In a plasma, 
Alfvén waves counter-propagating along a large scale B 
field adds a preferred direction, breaking the symmetry 

and increasing the importance of non-local energy 
transfer.



Nonlocal energy transfer

Figure 13.1: (Top) For the unity beta βi = 1 case, the normalized energy cascade rate ϵ/ϵ0 (black), cumulative ion
damping

∑
Pi/ϵ0 (red), cumulative electron damping

∑
Pe/ϵ0 (blue), and total cumulative damping

∑
(Pi + pe)/ϵ0

(green). Also plotted is the sum of energy transfer and damping (magenta) to demonstrate that energy is conserved in
this calculation. (Bottom) Ion damping rate (red), electron damping rate (blue), and total damping rate (black) as a
function of k⊥ρi.

73

a) The perpendicular magnetic energy from 
the weakened cascade model with βi = 1 
and Ti /Te = 16. In the lower three panels 

are plotted the non-local contribution to the 
nonlinear frequency at wavenumbers in the 
inertial, KAW, and weak dissipating KAW 

turbulence regimes respectively. From 
Howes et al (2011).

(Top) βi = 1 normalized cascade rate 
(black), cumulative ion (red) and electron 

(blue) heating rates. (Bottom) The ion 
(red), electron (blue), and total (black) 

damping rates at each scale.



Transfer function diagnostics

Tkpq =
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Non-linear transfer function from modes p and q to k:

Examining nonlinear transfer functions

Nonlinear transfer function:
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Instead of transfers in terms of k , p,
q, condense data into shells K , P , Q
determined by k?, p?, q?
Shell setup: kn = k0 · 2n/3 with
n = 25

k0 = 0.275 to have all driven modes
in lowest shell; range k?⇢i < 1
well-resolved

15 / 19Kinetic e�ects in the dissipation range of Alfvén wave turbulence

• Instead of transfers in terms of k, p, q, 
condense data into shells K, P, Q

• Shell setup: kn = k0 x 2n/3, where n = 25 and 
k0ρi = 0.275

• k0ρi = 0.275 chosen to place all driven 
modes in lowest shell and still resolve k0ρi < 
1



Net transfer of energy for electrons

4

Figure 3. Nonlinear shell-to-shell transfer function for elec-
trons and � = 1.

visual inspection, except for the entries (0,0), (0,1) and
(1,0) there are no obvious symmetric contributions, con-
firming the above assessment that the nonlinear trans-
fer is essentially free of external input for most shells.
Studying the conservative transfer more closely, one can
observe that for the shells k . 5, the transfer appears to
be rather nonlocal, with significant energy transfer be-
tween all of the mentioned shells. In the kinetic range
k > 6, on the other hand, the nonlinear transfer is quite
local, i.e. dominated by direct energy transfer between
neighboring shells.

In the following, we add a further level of detail by
judging the degree of locality or nonlocality not only
by evaluating net transfers, but by differentiating fur-
thermore between transfers that have a local or nonlocal
mediation. Such analyses can be performed by evalu-
ating the transfer function of Eq. 2 with triply filtered
inputs. Even with the limited number of wavenumber
shells used here, this diagnostic is very expensive (ap-
proximately / N3, leading to about 150,000 CPU-hours
in the present case), and is thus only evaluated instan-
taneously for one timestep. Its results can be visualized
in a compact way, e.g., by means of Kraichnan’s locality
functions [23]. The so-called infrared (IR) locality func-
tion is defined (following the notation of Ref. [20]) as
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NX
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and contains, for a fixed shell kc with a varying ’probe’
wavenumber kp, all transfers for which at least one leg
(p, q) is smaller than kp. Thus, starting with kp = kc and
moving kp away from kc successively, the transfer which
are retained become increasingly nonlocal.

For several kc shells, the corresponding IR locality
functions are shown in Fig. 4. An immediately obvi-
ous feature is the lack of self-similarity between the var-
ious depicted shells – starting from the right of the plot

Figure 4. Infrared locality function for electrons at � = 1.

(i.e. by excluding local transfer first), all curves start
with a different slope. Secondly, we find that – perhaps
counter-intuitively – the nonlinear transfer is quite non-
local (locality exponent � ⇡ 1/3, compared to 4/3 for
Navier-Stokes turbulence [24]) for the higher shell num-
bers, while above we found the net transfer to be local
for the very same shells.

This apparent contradiction can be explained by ex-
amining, e.g. the c = 21 curve for small kp/kc. For the
smallest six values of kp (these correspond to the range
k?⇢i . 1), the locality function steepens significantly,
i.e. these shells mediate relatively more energy than
their smaller-scale counterparts. The nonlinear triad
k + p + q = 0 for these interactions is thus character-
ized by q ⌧ k,p and thus k ⇡ p, consistent with a net
local transfer between k and p. This observation applies
to all c & 15. Thus, even for these shells (which have
k?⇢i & 7), about 30% of the total flux is nonlocally me-
diated through the largest scales k?⇢i . 1.

Finally, we examine the spectral properties of colli-
sional dissipation. For this purpose, we study the con-
tribution of the collision term to the free energy balance
(Eq. 1), resolving the perpendicular wavenumbers again
in an angle-averaged fashion, while averaging over all
other phase-space dimensions. The result of this pro-
cedure is depicted in Fig. 5 for both electron and ion
species, as well as the sum of both. We find that the
70% of the collisional dissipation occurs in the electron
species, with the remaining 30% being dissipated by the
ions. Strikingly, although the total energy dissipation
(dominated by the electrons) occurs mostly around the
region k?⇢i ⇠ 1 � 5, we find that it is necessary to in-
clude wavenumbers down to the electron gyroradius for
a reliable statement of how the dissipation is partitioned
between the species. This peculiar situation arises from
a depletion of the electron free energy due to the strong
collisional dissipation around k?⇢i ⇠ 2. In turn, the

• Examine the net non-linear transfer of energy by summing over all Q mediator shells

• Net energy transfer is local beyond shell 5, kρi >~ 1



Local versus non-local energy transfer

+

Local transfer
Large scale shearing Small scale diffusion

In neutral fluid turbulence, these can be transformed 
away via random Galilean transformations. In a plasma, 
Alfvén waves counter-propagating along a large scale B 
field adds a preferred direction, breaking the symmetry 

and increasing the importance of non-local energy 
transfer.



Results at MHD scales

PðkcÞ # PðiÞðkcÞ þPðiiÞðkcÞ;

PðiÞðkcÞ ¼
XN

K¼cþ1

Xc

P¼1

Xc

Q¼1

SðKjPjQÞ;

PðiiÞðkcÞ ¼
XN

K¼cþ1

Xc

P¼1

XN

Q¼cþ1

SðKjPjQÞ: (30)

Knowing the value of the flux through a shell surface kc, we
want to know how much of this flux is due to modes with
wavenumbers close but smaller then kc. For this purpose, we
take a probe (test) wavenumber boundary kp, so that kp & kc,
and we measure the contribution to the flux trough kc from
modes with wavenumber less than kp, similar to the philoso-
phy of the IR locality functions. By keeping kc fixed and
varying kp, we should obtain a smaller and smaller contribu-
tions. The rate at which the contributions become smaller is
related to the locality of the flux.

In the case of P(i), we can take the probe on the giver
shell index P,

PðiÞ
P ðkp jkcÞ ¼

XN

K¼cþ1

Xp

P¼1

Xc

Q¼1

SðKjPjQÞ; (31)

or on the advecting shell index Q,

PðiÞ
Q ðkp jkcÞ ¼

XN

K¼cþ1

Xc

P¼1

Xp

Q¼1

SðKjPjQÞ: (32)

The locality nature of the partial flux P(i) is related to both
effects; however, performing the probe variation separately
allows us to understand the locality nature of these two effects
individually. First, by varying the probe on the giver shell and
keeping the advection to the entire large scales region, we
transfer energy from increasingly separated scales. From
Fig. 7, we see that the locality function scales as 7/3, which
would indicate a highly local behavior. Second, we vary the
probe on the advecting shell while keeping the entire large
scale interval as the giver of energy. In Fig. 8, we see that the
advection brings a more nonlocal behavior to the partial flux.
When considered together, it is the more nonlocal behavior
that dominates the asymptotic behavior.

For the partial flux P(ii), a more pronounce nonlocal
behavior has been found. The scaling is close to a 2/3 value
for the kinetic forcing and a 3/4 value for the kinetic-
inductive forcing. The value of 3/4 for the IR locality expo-
nent is consistent with the theoretical value found by Aluie
and Eyink15 for fields that scale as k'1/4.

From the locality picture of the partial fluxes, we see
that the advecting effects are the ones responsible for the
value of the IR scaling exponent for the total flux. Combin-
ing all these behaviors (advecting and advected) results in a
scaling close to 2/3 obtained for Kraichnan IR locality func-
tions for the total energy flux of MHD turbulence.

V. CONCLUSIONS AND DISCUSSION

After investigating the locality properties of MHD
energy fluxes, it is found that asymptotically the dynamics
tend to be dominated by local interactions. The nonlocal
interactions that apparently exist cancel themselves out.
However, the locality is much weaker compared to the case
of HD turbulence, which is characterized by the scaling
exponent of 4/3. When using a velocity proportional force,
two distinct exponents are observed for MHD turbulence,
1/3 and 2/3 for various fluxes. The 1/3 exponent is even
more obvious for the kinetic-inductive forcing mechanism.

FIG. 5. Infrared locality functions for the total conversion term
Pir b;b

u ðkjkcÞ þPir u;b
b ðkjkcÞ; run I (a) and run III (b).

FIG. 6. Total flux for run III (gray) and run IV, displaying the contributions
made by the main terms. The (iii) terms are 10'6 times smaller compared to
the other two nonzero terms and fluctuate around zero.
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Figure 3. Nonlinear shell-to-shell transfer function for elec-
trons and � = 1.

visual inspection, except for the entries (0,0), (0,1) and
(1,0) there are no obvious symmetric contributions, con-
firming the above assessment that the nonlinear trans-
fer is essentially free of external input for most shells.
Studying the conservative transfer more closely, one can
observe that for the shells k . 5, the transfer appears to
be rather nonlocal, with significant energy transfer be-
tween all of the mentioned shells. In the kinetic range
k > 6, on the other hand, the nonlinear transfer is quite
local, i.e. dominated by direct energy transfer between
neighboring shells.

In the following, we add a further level of detail by
judging the degree of locality or nonlocality not only
by evaluating net transfers, but by differentiating fur-
thermore between transfers that have a local or nonlocal
mediation. Such analyses can be performed by evalu-
ating the transfer function of Eq. 2 with triply filtered
inputs. Even with the limited number of wavenumber
shells used here, this diagnostic is very expensive (ap-
proximately / N3, leading to about 150,000 CPU-hours
in the present case), and is thus only evaluated instan-
taneously for one timestep. Its results can be visualized
in a compact way, e.g., by means of Kraichnan’s locality
functions [23]. The so-called infrared (IR) locality func-
tion is defined (following the notation of Ref. [20]) as
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and contains, for a fixed shell kc with a varying ’probe’
wavenumber kp, all transfers for which at least one leg
(p, q) is smaller than kp. Thus, starting with kp = kc and
moving kp away from kc successively, the transfer which
are retained become increasingly nonlocal.

For several kc shells, the corresponding IR locality
functions are shown in Fig. 4. An immediately obvi-
ous feature is the lack of self-similarity between the var-
ious depicted shells – starting from the right of the plot

Figure 4. Infrared locality function for electrons at � = 1.

(i.e. by excluding local transfer first), all curves start
with a different slope. Secondly, we find that – perhaps
counter-intuitively – the nonlinear transfer is quite non-
local (locality exponent � ⇡ 1/3, compared to 4/3 for
Navier-Stokes turbulence [24]) for the higher shell num-
bers, while above we found the net transfer to be local
for the very same shells.

This apparent contradiction can be explained by ex-
amining, e.g. the c = 21 curve for small kp/kc. For the
smallest six values of kp (these correspond to the range
k?⇢i . 1), the locality function steepens significantly,
i.e. these shells mediate relatively more energy than
their smaller-scale counterparts. The nonlinear triad
k + p + q = 0 for these interactions is thus character-
ized by q ⌧ k,p and thus k ⇡ p, consistent with a net
local transfer between k and p. This observation applies
to all c & 15. Thus, even for these shells (which have
k?⇢i & 7), about 30% of the total flux is nonlocally me-
diated through the largest scales k?⇢i . 1.

Finally, we examine the spectral properties of colli-
sional dissipation. For this purpose, we study the con-
tribution of the collision term to the free energy balance
(Eq. 1), resolving the perpendicular wavenumbers again
in an angle-averaged fashion, while averaging over all
other phase-space dimensions. The result of this pro-
cedure is depicted in Fig. 5 for both electron and ion
species, as well as the sum of both. We find that the
70% of the collisional dissipation occurs in the electron
species, with the remaining 30% being dissipated by the
ions. Strikingly, although the total energy dissipation
(dominated by the electrons) occurs mostly around the
region k?⇢i ⇠ 1 � 5, we find that it is necessary to in-
clude wavenumbers down to the electron gyroradius for
a reliable statement of how the dissipation is partitioned
between the species. This peculiar situation arises from
a depletion of the electron free energy due to the strong
collisional dissipation around k?⇢i ⇠ 2. In turn, the

Use Kraichnan (1959) locality functions

• Fix a shell, kc and vary a probe shell kp

• Consider all transfers for which one leg (p,q) 
is smaller than kp

• Start with kp = kc and move kp further away, 
retaining increasingly non-local contributions

• Neutral fluids find a locality exponent, γ ~ 
4/3, that is universal in the inertial range

• Incompressible MHD simulations find  γ ~ 
2/3 for the total flux
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Figure 3. Nonlinear shell-to-shell transfer function for elec-
trons and � = 1.

visual inspection, except for the entries (0,0), (0,1) and
(1,0) there are no obvious symmetric contributions, con-
firming the above assessment that the nonlinear trans-
fer is essentially free of external input for most shells.
Studying the conservative transfer more closely, one can
observe that for the shells k . 5, the transfer appears to
be rather nonlocal, with significant energy transfer be-
tween all of the mentioned shells. In the kinetic range
k > 6, on the other hand, the nonlinear transfer is quite
local, i.e. dominated by direct energy transfer between
neighboring shells.

In the following, we add a further level of detail by
judging the degree of locality or nonlocality not only
by evaluating net transfers, but by differentiating fur-
thermore between transfers that have a local or nonlocal
mediation. Such analyses can be performed by evalu-
ating the transfer function of Eq. 2 with triply filtered
inputs. Even with the limited number of wavenumber
shells used here, this diagnostic is very expensive (ap-
proximately / N3, leading to about 150,000 CPU-hours
in the present case), and is thus only evaluated instan-
taneously for one timestep. Its results can be visualized
in a compact way, e.g., by means of Kraichnan’s locality
functions [23]. The so-called infrared (IR) locality func-
tion is defined (following the notation of Ref. [20]) as
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and contains, for a fixed shell kc with a varying ’probe’
wavenumber kp, all transfers for which at least one leg
(p, q) is smaller than kp. Thus, starting with kp = kc and
moving kp away from kc successively, the transfer which
are retained become increasingly nonlocal.

For several kc shells, the corresponding IR locality
functions are shown in Fig. 4. An immediately obvi-
ous feature is the lack of self-similarity between the var-
ious depicted shells – starting from the right of the plot

Figure 4. Infrared locality function for electrons at � = 1.

(i.e. by excluding local transfer first), all curves start
with a different slope. Secondly, we find that – perhaps
counter-intuitively – the nonlinear transfer is quite non-
local (locality exponent � ⇡ 1/3, compared to 4/3 for
Navier-Stokes turbulence [24]) for the higher shell num-
bers, while above we found the net transfer to be local
for the very same shells.

This apparent contradiction can be explained by ex-
amining, e.g. the c = 21 curve for small kp/kc. For the
smallest six values of kp (these correspond to the range
k?⇢i . 1), the locality function steepens significantly,
i.e. these shells mediate relatively more energy than
their smaller-scale counterparts. The nonlinear triad
k + p + q = 0 for these interactions is thus character-
ized by q ⌧ k,p and thus k ⇡ p, consistent with a net
local transfer between k and p. This observation applies
to all c & 15. Thus, even for these shells (which have
k?⇢i & 7), about 30% of the total flux is nonlocally me-
diated through the largest scales k?⇢i . 1.

Finally, we examine the spectral properties of colli-
sional dissipation. For this purpose, we study the con-
tribution of the collision term to the free energy balance
(Eq. 1), resolving the perpendicular wavenumbers again
in an angle-averaged fashion, while averaging over all
other phase-space dimensions. The result of this pro-
cedure is depicted in Fig. 5 for both electron and ion
species, as well as the sum of both. We find that the
70% of the collisional dissipation occurs in the electron
species, with the remaining 30% being dissipated by the
ions. Strikingly, although the total energy dissipation
(dominated by the electrons) occurs mostly around the
region k?⇢i ⇠ 1 � 5, we find that it is necessary to in-
clude wavenumbers down to the electron gyroradius for
a reliable statement of how the dissipation is partitioned
between the species. This peculiar situation arises from
a depletion of the electron free energy due to the strong
collisional dissipation around k?⇢i ⇠ 2. In turn, the

• Mediators are more non-local than neutral fluid or MHD turbulence

• Non-locality increases at small scales, implying non-self-similar behavior

• Behavior at large scale closer to neutral fluid



Evolution of the distribution function and E
Field-Particle Correlations 23

-4 -2 0 2 4
v/vte

x10-2

-4

-2

 0

 2

 4

-0.2 -0.1 0 0.1 0.2
0

5

10

15

20

25

E/E0

tω
pe

(a) (b)

Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-



Transform to g
“A Technical Step”

We transform to the complementary perturbed distribution:
(Schekochihin et al 2009 ApJS, §5.1)

gs(Rs, v⊥, v∥) = hs(Rs, v⊥, v∥)−
qsF0s

T0s

〈

φ−
v⊥ ·A⊥

c

〉

Rs

gs describes perturbations to the Maxwellian velocity
distribution in the frame moving with an Alfvén wave.

These perturbations are associated the compressive
component of the turbulence and therefore the two
collisionless damping mechanisms under consideration.

The Gyrotropic Perturbed Distribution is Messy
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Reduction via Integration yields ...
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